Startseite Vergleich Impedanzregelung (IC) – Parallele Impedanzregelung (PIC) zur Kraft-/Impedanzregelung dynamischer Systeme
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Vergleich Impedanzregelung (IC) – Parallele Impedanzregelung (PIC) zur Kraft-/Impedanzregelung dynamischer Systeme

  • Michael Mack

    Michael Mack ist wissenschaftlicher Mitarbeiter am OUZ der medizinischen Fakultät Mannheim der Universität Heidelberg. Hauptarbeitsgebiete: Entwicklung stationärer und handgehaltener Assistenzsysteme und Operationsroboter

    EMAIL logo
Veröffentlicht/Copyright: 28. März 2019

Zusammenfassung

Bei der gleichzeitigen Regelung von Kräften und Nachgiebigkeiten besteht für die serielle Anordnung von Kraft- und Nachgiebigkeitsregler der Impedanzregelung (IC) das Problem der gegenseitigen Beeinflussung der Regelkreise. Mit der im Folgenden im Vergleich gegenüber der IC präsentierten neuen parallelen Impedanzregelung (PIC) wird durch eine parallele Regleranordnung die gegenseitige Beeinflussung der Regler vermieden. Übersteigen die einwirkenden Störkräfte die auszuübenden Sollkräfte, kann durch die PIC ein nachgiebiges Verhalten bei wesentlich verringerter Antriebsleistung erreicht werden.

Abstract

By the concurrent control of forces and compliances with the impedance control (IC), characterized by a serial arrangement of force and impedance controller, the problem of a mutual influencing of the control circuits exists. With the parallel impedance control (PIC), presented in comparison to the IC below, the mutual influencing of the controllers is avoided by a parallel controller arrangement. If the acting disturbing forces exceed the desired forces, the PIC can achieve a compliant behavior with considerably reduced drive power.

About the author

Michael Mack

Michael Mack ist wissenschaftlicher Mitarbeiter am OUZ der medizinischen Fakultät Mannheim der Universität Heidelberg. Hauptarbeitsgebiete: Entwicklung stationärer und handgehaltener Assistenzsysteme und Operationsroboter

Literatur

1. G. Zeng and A. Hemami, (1997), “An overview of robot force control”, Robotica, Vol. 15(5), pp. 473–482.10.1017/S026357479700057XSuche in Google Scholar

2. W. S. Newman, (1992), “Stability and Performance Limits of Interaction Controllers’’, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 114(4), pp. 563–570.10.1115/1.2897725Suche in Google Scholar

3. A. M. Lopes and F.G. Almeida, (2007), “Acceleration-based force-impedance control of a six-dof parallel manipulator”, Industrial Robot: An International Journal, Vol. 34(5), pp. 386–399.10.1108/01439910710774395Suche in Google Scholar

4. M. Laffranchi, N.G. Tsagarakis and D.G. Cadwell, (2010), “A Variable Physical Damping Actuator (VPDA) for Compliant Robotic Joints”, in International Conference on Robotics and Automation, Anchorage, Alaska, USA, pp. 1668–1674.10.1109/ROBOT.2010.5509971Suche in Google Scholar

5. M. Laffranchi, N. Tsagarakis and D. Caldwell, (2013), “Analysis and Development of a Semiactive Damper for Compliant Actuation systems”, IEEE/ASME Transactions on Mechatronics, Vol. 18(2), pp. 744–753.10.1109/TMECH.2012.2184293Suche in Google Scholar

6. M. Laffranchi, L. Chen, N. Tsagarakis and G. Caldwell, (2012), “The role of Physical Damping in Compliant Actuation systems”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal.10.1109/IROS.2012.6385883Suche in Google Scholar

7. M. Catalano, G. Griolo, M. Garabini, F. Weilemann Belo, A. di Basco, N. Tsagarakis and A. Bicchi, (2012), “A Variable Damping Module for Variable Impedance Actuation”, IEEE International Conference on Robotics and Automation, River Centre, Saint Paul, Minnesota, USA, pp. 2666–2672.10.1109/ICRA.2012.6224938Suche in Google Scholar

8. M. Focchi, G. A. Medrano-Cerda, T. Boaventura, M. Frigerio, C. Semini, J. Buchli and D. G. Caldwell, (2014), “Robot impedance control and passivity analysis with inner torque and velocity feedback loops”, Control Theory and Technology, Vol. 12(1), pp. 68–81.10.1007/s11768-016-5015-zSuche in Google Scholar

9. C. Chew, G. Hong and W. Zhou, (2004), “Series damper actuator: a novel force/torque control actuator”, 4th IEEE/RAS International Conference on Humanoid Robots, Vol. 2, pp. 533–546.Suche in Google Scholar

10. B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D.G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganeshd, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadina, H. Hoppnera, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. Van Dammef, R. Van Hamf, L.C. Visser and S. Wolfa, (2013), “Variable impedance actuators: A review”, Robotics and Autonomous Systems, Vol. 61, pp. 1601–1614.10.1016/j.robot.2013.06.009Suche in Google Scholar

11. C. Ott, R. Mukherjee and Y. Nakamura, (2010), “Unified Impedance and Admittance Control”, IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, pp. 554–561.10.1109/ROBOT.2010.5509861Suche in Google Scholar

12. C. Ott, R. Mukherjee and Y. Nakamura, (2015), “A Hybrid System Framework for Unified Impedance and Admittance Control”, Journal of Intelligent and Robotic Systems, Vol. 78, pp. 359–375.10.1007/s10846-014-0082-1Suche in Google Scholar

13. AssRob Tool Instrumentor experiment (http://www.echord.info/wikis/website/assrob).Suche in Google Scholar

14. G. A. Pratt and M. M. Williamson, (1995), “Series elastic actuators”, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 399–406.Suche in Google Scholar

15. J. Pratt, B. Krupp and C. Morse, (2002), “Series elastic actuators for high fidelity force control”, Industrial Robot, Vol. 29(3), pp. 234–241.10.1108/01439910210425522Suche in Google Scholar

16. J. Oblak and Z. Matjačić, (2011), “Design of a series visco-elastic actuator for multi-purpose rehabilitation haptic device”, Journal of NeuroEngineering and Rehabilitation, Vol. 8, 3.10.1186/1743-0003-8-3Suche in Google Scholar PubMed PubMed Central

17. T. Büssing, L. Goujon and C. Barthod, (2012), “Variable compliance device for a respiratory physiotherapy training simulator”, Mecatronicss-REM 2012, Paris, France.10.1109/MECATRONICS.2012.6451009Suche in Google Scholar

18. C. English and D. Russell, (1999), “Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs”, Mechanism and Machine Theory, Vol. 34, pp. 7–25.10.1016/S0094-114X(98)00026-3Suche in Google Scholar

19. K. Hollander, T. Sugar and D. Herring, (2005), “Adjustable Robotic Tendon using a ‘Jack Spring’TM”, Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, pp. 113–118.Suche in Google Scholar

20. H. Vallery, J. Veneman, E. Van Asseldonk, R. Ekkelenkamp, M. Buss and H. Van der Kooij, (2008), “Compliant actuation of rehabilitation robots”, IEEE Robot. Autom. Mag., Vol. 15(3), pp. 60–69.10.1109/MRA.2008.927689Suche in Google Scholar

21. H. Vallery, R. Ekkelenkamp, H. van der Kooij and M. Buss, (2007), “Passive and Accurate Torque Control of SeriesElastic Actuators”, Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Szstems, San Diego, CA, USA, pp. 3534–3538.10.1109/IROS.2007.4399172Suche in Google Scholar

22. L. Mesquita, S. do Amaral, B. Jardim, A. Almeida and G. Siqueira, (2012), “Robust force and impedance control of series elastic actuators”, ABCM Symposium Series in Mechatronics – Section II – Control Systems, Vol. 5, pp. 212–221.Suche in Google Scholar

23. G. Wyeth, (2008), “Demonstrating the Safety and Performance of a Velocity Sourced Series Elastic Actuator”, IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 3642–3646.10.1109/ROBOT.2008.4543769Suche in Google Scholar

24. E. Rouse, L. Mooney and H. Herr, (2014), “Clutchable series-elastic actuator: Implications for prosthetic knee design”, The International Journal of Robotic Research, Vol. 33(13), pp. 1611–1625.10.1177/0278364914545673Suche in Google Scholar

25. A. Calanca, R. Muradore and P. Fiorini, (2017), “Impedance control of series elastic actuators: Passivity and acceleration-based control”, Mechatronics, Vol. 47, pp. 37–48.10.1016/j.mechatronics.2017.08.010Suche in Google Scholar

26. N. Tagliamonte and D. Accoto, (2014), “Passivity constraints for the impedance control of series elastic actuators”, Journal of Systems and Control Engineering, Vol. 228(3), pp. 138–153.10.1177/0959651813511615Suche in Google Scholar

27. A. De Luca and W. Book, (2008), “Robots with flexible elements”, in Handbook of Robotics, New York: Springer.10.1007/978-3-540-30301-5_14Suche in Google Scholar

28. W. Book, O. Maizza-Neto and D.E. Whitney, (1975), “Feedback Control of Two Beam, Two Joint Systems with Distributed Flexibility”, ASME J. Dyn. Syst. Meas. Control 97(4), pp. 424–431.10.1115/1.3426959Suche in Google Scholar

29. J. Dixon, (2008), “The Shock Absorber Handbook, Second Edition”, Verlag: John Wiley & Sons.10.1002/9780470516430Suche in Google Scholar

30. B. Behrens, R. Krimm und T. Hasselbusch, (2017), “Dämpfung der Stößelschwingungen beim Scherschneiden mittels piezoelektrischer Aktoren”, umformtechnik.net, Verlag Meisenbach GmbH, Bamberg, I/2017, pp. 1–8.Suche in Google Scholar

31. S. Rakheja, Hong Su and T.S. Sankar, (1990), “Analysis of a Passive Sequential Hydraulic Damper for Vehicle Suspension”, Vehicle System Dynamics, Vol. 19, pp. 289–312.10.1080/00423119008968949Suche in Google Scholar

32. W. Fannin and H. Buchanan (1987), “Hydraulic Damper for Vehicles with variable Orficie Piston Valving for varying damping Force”, United States Patent, Patent Number 4,685,545.Suche in Google Scholar

33. L. Cannizzaro, G. Vitzi Mariotti, A. Giallanza, M. Porretto and G. Marannano, (2016), “Design of an Electromagnetic Regenerative Damper and Energy Harvesting Assessment”, Journal of Electromagnetics, Vol. 1, pp. 5–11.Suche in Google Scholar

34. Peng Li, Lei Zuo, J. Lu and Li Xu, (2014), “Electromagnetic Regenerative Suspension System for Ground Vehicles”, IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA, USA, pp. 2513–2518.Suche in Google Scholar

35. A. Fow and M. Duke, (2016), “Electromagnetic damper control strategies for light weight electric vehicles”, IEEE Advanced Motion Control, Auckland New Zealand.10.1109/AMC.2016.7496321Suche in Google Scholar

36. M. Brennan, M. Day and R. Randall, (1995), An electrorheological fluid vibration damper, Smart Materials and Structures, Vol. 4(2), pp. 83–92.10.1088/0964-1726/4/2/003Suche in Google Scholar

37. Y. P. Wang, Y. Shio, J. Guo, M. H. Chiang and Y. K. Din, (2007), “Semi-active control of vehicle suspension system using electrorheological dampers”, 3rd Institution of Engineering and Technology Conference.Suche in Google Scholar

38. G. Wu, Z. Feng, G. Zhang and Z. Hou, (2011), “Experimental study on response time of magnetorheological damper”, 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), Zhengzhou, China.10.1109/AIMSEC.2011.6010142Suche in Google Scholar

39. T. Mori, I. Nilkhamhang and A. Sano, (2007), “Adaptive semi-active Control of Suspension System with MR Damper”, IFAC Proceedings Volumes, Vol. 40(13), pp. 191–196.10.3182/20070829-3-RU-4911.00031Suche in Google Scholar

40. L. BalaMurugan and J. Jancirani, (2012), “An investigation on semi-active suspension damper and control strategies for vehicle ride comfort and road holding ”, Journal of Systems and Control Engineering, Vol. 226(8), pp. 1119–1129.10.1177/0959651812447520Suche in Google Scholar

41. G. Leitmann and E. Reithmeier, (1993), “Semiactive Control of a Vibrating System by Means of Electrorheological Fluids”, Dynamics and Control, Vol. 3, pp. 7–33.10.1007/BF01968357Suche in Google Scholar

42. B. Vanderborght, R. Van Ham, D. Lefeber, T. Sugar and K. Hollander, (2009), “Comparision of Mechanical Design and Energy Consumption of Adadptable, Passive-compliant Actuators”, International Journal of Robotics Research, Vol. 28(1), pp. 90–103.10.1177/0278364908095333Suche in Google Scholar

43. R. Carloni, L. Visser and S. Stramigioli, (2012), “Variable Stiffness Actuators: A Port-Based Power-Flow Analysis”, IEEE Transactions on Robotics, Vol. 28(1), pp. 1–11.10.1109/TRO.2011.2168709Suche in Google Scholar

44. S. Rao, R. Carloni and S. Stramigioli, (2011), “A novel energy-efficient rotational variable stiffness actuator”, International Conference of the IEEE EMBS, Boston, Massachusetts USA, pp. 8175–8178.Suche in Google Scholar

45. W. Roozing, Z. Li, G. Medrano-Cerda, D. Caldwell and N. Tsagarakis, (2016), “Development and Control of a Compliant Asymmetric Antagonistic Actuator for Energy Efficient Mobility”, IEEE/ASME Transactions on Mechatronics, Vol. 21(2), pp. 1080–1091.10.1109/TMECH.2015.2493359Suche in Google Scholar

Received: 2018-04-11
Accepted: 2019-01-28
Published Online: 2019-03-28
Published in Print: 2019-04-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/auto-2018-0049/html
Button zum nach oben scrollen