Home Verification of hybrid systems using Kaucher arithmetic
Article
Licensed
Unlicensed Requires Authentication

Verification of hybrid systems using Kaucher arithmetic

  • Stefan Schwab

    Stefan Schwab studied electrical engineering at the Karlsruhe Institute of Technology (KIT) and the University of Newcastle, Australia and received his Master’s degree from KIT in 2012. Afterwards he worked as research assistant at the Institute of Control Systems (IRS) at Karlsruhe Institute of Technology (KIT) and was fellow of the doctoral college “Projekthaus eDrive”. In 2018 he became department manager Control in Information Technology (CIT) at the Research Center for Information Technology (FZI) in Karlsruhe.

    EMAIL logo
    and Soeren Hohmann

    Soeren Hohmann studied electrical engineering at the Technische Universität Braunschweig, University of Karlsruhe and école nationale supérieure d’électricité et de mécanique Nancy. He received the diploma degree (1997) and Ph. D. degree (2002) from University of Karlsruhe. Afterwards, until 2010 he worked in the industry for BMW, Munich, where his last position was head of the predevelopement and series developement of active safety systems. Today he is the head of the Institute of Control Systems (IRS) at the Karlsruhe Institute of Technology (KIT) as well as a directors board member of the Research Center for Information Technology (FZI), Karlsruhe. His research interests are cooperative control, alternative energies and system guarantees by design.

Published/Copyright: March 28, 2019

Abstract

The increasing complexity of technical systems leads to increasing challenges regarding the verification of those systems. Especially in the context of safety critical systems, there is a high need for reliable verification results. Currently verification is mainly based on expert knowledge and the use of high performance hardware to investigate a very high amount of test cases. This article proposes an alternative approach using an iterating segmentation and identification algorithm that is appended by interval arithmetic calculations. This combination yields guaranteed results that do not suffer from type II failures, i. e., that will never verify an erroneous system. This is especially relevant in the context of safety critical systems.

Zusammenfassung

Die zunehmende Komplexität technischer Systeme führt zu immer größeren Problemen bei der Verifikation. Insbesondere im Kontext von sicherheitskritischen Systemen besteht ein großer Bedarf an zuverlässigen Verifikationsergebnisse. Aktuelle Verifikationsansätze basieren häufig auf Expertenwissen oder dem Einsatz von hoch performanter Hardware zur Untersuchung einer sehr großen Anzahl von Testfällen. Dieser Beitrag zeigt einen alternativen Ansatz basierend auf einen interativen Identifikations- und Segmentierungsalgorithmus. Der eingeführte Algorithmus wird anschließend auf intervalarithmetische Rechnung erweitert. Dadurch ist es möglich, mathematisch garantierte Ergebnisse zu erzielen, die keine Fehler zweiter Art erzeugen. Fehlerhafte Systeme werden somit niemals fälschlicherweise verifiziert. Diese Eigenschaft ist gerade im Kontext von sicherheitskritischen Systemen sehr wichtig.

Funding statement: This work was partially funded by ITK Engineering GmbH.

About the authors

Stefan Schwab

Stefan Schwab studied electrical engineering at the Karlsruhe Institute of Technology (KIT) and the University of Newcastle, Australia and received his Master’s degree from KIT in 2012. Afterwards he worked as research assistant at the Institute of Control Systems (IRS) at Karlsruhe Institute of Technology (KIT) and was fellow of the doctoral college “Projekthaus eDrive”. In 2018 he became department manager Control in Information Technology (CIT) at the Research Center for Information Technology (FZI) in Karlsruhe.

Soeren Hohmann

Soeren Hohmann studied electrical engineering at the Technische Universität Braunschweig, University of Karlsruhe and école nationale supérieure d’électricité et de mécanique Nancy. He received the diploma degree (1997) and Ph. D. degree (2002) from University of Karlsruhe. Afterwards, until 2010 he worked in the industry for BMW, Munich, where his last position was head of the predevelopement and series developement of active safety systems. Today he is the head of the Institute of Control Systems (IRS) at the Karlsruhe Institute of Technology (KIT) as well as a directors board member of the Research Center for Information Technology (FZI), Karlsruhe. His research interests are cooperative control, alternative energies and system guarantees by design.

References

1. G. Alefeld and G. Mayer, “Interval analysis: Theory and applications”, Journal of Computational and Applied Mathematics, vol. 121, pp. 421–464, 2000.10.1016/S0377-0427(00)00342-3Search in Google Scholar

2. D. Araiza-Illan, K. Eder and A. Richards, “Verification of control systems implemented in simulink with assertion checks and theorem proving: A case study,” in Control Conference (ECC), 2015 European, July 2015, pp. 2670–2675.10.1109/ECC.2015.7330941Search in Google Scholar

3. A. Bemporad, A. Garulli, S. Paoletti and A. Vicino, “A bounded-error approach to piecewise affine system identification,” IEEE Transactions on Automatic Control, vol. 50, no. 10, pp. 1567–1580, 2005.10.1109/TAC.2005.856667Search in Google Scholar

4. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker and A. Pretschner, Model-based testing of reactive systems: Advanced lectures, ser. Lecture Notes in Computer Science; 3472. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.10.1007/b137241Search in Google Scholar

5. W. Chang, D. Roy, L. Zhang and S. Chakraborty, “Model-based design of resource-efficient automotive control software,” in 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2016, pp. 1–8.10.1145/2966986.2980075Search in Google Scholar

6. A. Denise, M.-C. Gaudel and S.-D. Gouraud, “A generic method for statistical testing,” in Software Reliability Engineering, 2004. ISSRE 2004. 15th International Symposium on, 2004, pp. 25–34.Search in Google Scholar

7. G. Diehm, S. Maier, M. Flad and S. Hohmann, “An identification method for individual driver steering behaviour modelled by switched affine systems,” in Proceedings of the 52nd IEEE Conference on Decision and Control, 2013, pp. 3547–3553.10.1109/CDC.2013.6760428Search in Google Scholar

8. G. Diehm, S. Maier, M. Flad and S. Hohmann, “Online identification of individual driver steering behaviour and experimental results,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2013, pp. 221–227.10.1109/SMC.2013.44Search in Google Scholar

9. J. Faber, “Verification architectures for real-time systems,” in Proceedings of Formal Methods 2009 Doctoral Symposium, M. Mousavi and E. Sekerinski, Eds., ser. CS-Report, Eindhoven University of Technology, 2009, pp. 14–19.Search in Google Scholar

10. H. D. Foster, “Trends in functional verification: A 2014 industry study,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp. 1–6.10.1145/2744769.2744921Search in Google Scholar

11. I. Gozse, T. Peni, T. Luspay and A. Soumelidis, “On the correspondence of hyperbolic geometry and system analysis,” Proceedings of the 20th IFAC World Congress, 2017.10.1016/j.ifacol.2017.08.917Search in Google Scholar

12. C. Heitmeyer, M. Archer, R. Bharadwaj and R. Jeffords, “Tools for constructing requirements specifications: The SCR toolset at the age of ten,” 2005.Search in Google Scholar

13. T. Helmer, L. Wang, K. Kompass and R. Kates, “Safety performance assessment of assisted and automated driving by virtual experiments: Stochastic microscopic traffic simulation as knowledge synthesis,” in: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 2015, pp. 2019–2023.10.1109/ITSC.2015.327Search in Google Scholar

14. M. Hladík, “AE solutions and AE solvability to general interval linear systems,” ArXiv e-prints, 2014.10.1016/j.laa.2014.09.030Search in Google Scholar

15. IEC 61508 – functional safety of electrical/electronic/programmable electronic safety-related systems, 2010, Geneva, Switzerland: International Electrotechnical Commission, 2010.Search in Google Scholar

16. ISO 26262 – road vehicles – functional safety, Geneva, Switzerland, 2011.Search in Google Scholar

17. E. Kaucher, “Interval analysis in the extended interval space IR,” in Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis), G. Alefeld and R. D. Grigorieff, Eds. Vienna: Springer Vienna, 1980, pp. 33–49.10.1007/978-3-7091-8577-3_3Search in Google Scholar

18. R. B. Kearfott, M. T. Nakao, A. Neumaier, S. M. Rump, S. P. Shary and P. van Hentenryck, “Standardized notation in interval analysis,” Proc. XIII Baikal International School-seminar “Optimization methods and their applications”, vol. 4, 106–113, 2005.Search in Google Scholar

19. A. Koenig, K. Witzlsperger, F. Leutwiler and S. Hohmann, “Overview of HAD validation and passive HAD as a concept for validating highly automated cars,” at – Automatisierungstechnik, 2018.10.1515/auto-2017-0113Search in Google Scholar

20. L. Kupriyanova, “Inner estimation of the united solution set of interval linear algebraic system,” Reliable Computing, vol. 1, no. 1, 15–31, 1995.10.1007/BF02390519Search in Google Scholar

21. A. V. Lakeyev, “On unboundedness of generalized solution sets for interval linear systems,” Reliable Computing, vol. 19, 2014.Search in Google Scholar

22. S. Otten, J. Bach, C. Wohlfahrt, C. King, J. Lier, H. Schmid, S. Schmerler and E. Sax, “Automated assessment and evaluation of digital test drives,” in Advanced Microsystems for Automotive Applications 2017, C. Zachäus, B. Müller and G. Meyer, Eds. Cham: Springer International Publishing, 2018, pp. 189–199.10.1007/978-3-319-66972-4_16Search in Google Scholar

23. M. Pajic, J. Park, I. Lee, G. J. Pappas and O. Sokolsky, “Automatic verification of linear controller software,” in Proceedings of the 12th International Conference on Embedded Software, ser. EMSOFT’15, Amsterdam, The Netherlands: IEEE Press, 2015, pp. 217–226.10.1109/EMSOFT.2015.7318277Search in Google Scholar

24. A. Rajan and T. Wahl, Eds., Cesar – cost-efficient methods and processes for safety-relevant embedded systems, Springer-Verlag Wien, 2013.10.1007/978-3-7091-1387-5Search in Google Scholar

25. S. Ramesh, B. Vogel-Heuser, W. Chang, D. Roy, L. Zhang and S. Chakraborty, “Invited: Specification, verification and design of evolving automotive software,” in 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), 2017, pp. 1–6.10.1145/3061639.3072946Search in Google Scholar

26. H. Roehm, J. Oehlerking, M. Woehrle and M. Althoff, “Reachset conformance testing of hybrid automata,” in Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, ser. HSCC’16, Vienna, Austria: ACM, 2016, pp. 277–286.10.1145/2883817.2883828Search in Google Scholar

27. M. A. Sainz, J. Armengol, R. Calm, P. Herrero, L. Jorba and J. Vehi, Modal interval analysis – new tools for numerical information, Springer International Publishing, 2014.10.1007/978-3-319-01721-1Search in Google Scholar

28. S. Schwab and S. Hohmann, “Automatisierte Verifikation hybrider Systeme am Beispiel eines Batteriemanagementsystems,” German, in 15. Fachtagung EKA-Entwurf komplexer Automatisierungssysteme, Magdeburg, 02.–03.05.2018, ifak / Otto-von-Guericke-Universität, Magdeburg, 2018.Search in Google Scholar

29. S. Schwab, O. Stark and S. Hohmann, “Verified diagnosis of safety critical dynamic systems based on kaucher interval arithmetic,” Proceedings of the 20th IFAC World Congress, 2017.10.1016/j.ifacol.2017.08.1939Search in Google Scholar

30. S. Shary, “Algebraic approach to the interval linear static identification, tolerance, and control problems, or One more application of Kaucher arithmetic,” Reliable Computing, vol. 2, no. 1, pp. 3–33, 1996.10.1007/BF02388185Search in Google Scholar

31. S. Shary, “A new technique in systems analysis under interval uncertainty and ambiguity,” Reliable Computing vol. 8, pp. 321–418, 2002.10.1023/A:1020505620702Search in Google Scholar

32. S. Shary, “On full-rank interval matrices,” Numerical Analysis and Applications, vol. 7, no. 3, pp. 241–254, 2014.10.1134/S1995423914030069Search in Google Scholar

33. P. Thevenod-Fosse, H. Waeselynck and Y. Crouzet, “An experimental study on software structural testing: deterministic versus random input generation,” in Fault-Tolerant Computing, 1991. FTCS-21. Digest of Papers., Twenty-First International Symposium, 1991, pp. 410–417.Search in Google Scholar

34. M. Utting, A. Pretschner and B. Legeard, “A taxonomy of model-based testing,” 2006.Search in Google Scholar

35. F. Wolff, Konsistenzbasierte Fehlerdiagnose nichtlinearer Systeme mittels Zustandsmengenbeobachtung, ser. Schriften des Instituts für Regelungs- und Steuerungssysteme, Karlsruher Institut für Technologie; 09, KIT Scientific Publishing, 2010, Zugl.: Karlsruhe, KIT, Diss., 2010.Search in Google Scholar

36. J. Zander-Nowicka, “Model-based testing of real-time embedded systems in the automotive domain,” 2009.10.4018/978-1-60566-750-8.ch015Search in Google Scholar

Received: 2018-07-31
Accepted: 2018-12-03
Published Online: 2019-03-28
Published in Print: 2019-04-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/auto-2018-0095/html
Scroll to top button