Startseite Disturbance observer-based visual servoing for multirotor unmanned aerial vehicles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Disturbance observer-based visual servoing for multirotor unmanned aerial vehicles

  • Hui Xie

    Hui Xie received his B. Sc. degree in mechanical engineering from Harbin Engineering University in 2007, the M. Sc. degree in mechatronics engineering from Harbin Institute of Technology in 2009, and Ph. D. in Electrical and Computer Engineering from the University of Alberta in 2016. Currently, he is a postdoctoral research associate in School of Electrical and Data Engineering, University of Technology Sydney.His research interests include nonlinear control theory, state estimation, and vision-based control with applications to unmanned aerial vehicles and mobile robots.

    EMAIL logo
    , Zhen He

    Zhen He received the Ph. D. degree in automatic control theory and application from Nanjing University of Astronautics and Aeronautics, China, in 2010. She is currently an Associate Professor with Nanjing university of Aeronautics and Astronautics. Her research interests include nonlinear control and flight control.

    und Darryl Veitch

    Darryl Veitch received the B. Sc. degree (Hons.) from Monash University, Australia, in 1985, and the Ph. D. degree in mathematics from the DAMPT, Cambridge, University in 1990. He was with TRL, Telstra, Melbourne, Australia; CNET, France Telecom, Paris, France; KTH, Stockholm, Sweden; INRIA Sophia Antipolis and Paris, France; Bellcore, NJ, USA; RMIT, Melbourne; Technicolor, Paris; and EMUlab and CUBIN, The University of Melbourne, where he was a Professorial Research Fellow until 2014. He is currently a Professor with the School of Computing and Communications, University of Technology Sydney. His research interests are centered on computer networking and inference and include traffic modeling, parameter estimation, the theory and practice of active measurement, traffic sampling and sketching, information theoretic security, and clock synchronisation over networks.

Veröffentlicht/Copyright: 13. März 2018

Abstract

This paper presents a disturbance observer based input saturated visual servoing law for a quadrotor unmanned aerial vehicle (UAV). The controller regulates the 4D relative pose, i. e., 3D translational and yaw motion, between the vehicle and a planar horizontal visual target in an environment with external disturbances. A feedforward control is used to compensate the lumped disturbance consisting of both system uncertainties and external disturbances. The feedback control part is based on a nested saturation control, which is used to bound the orientation of the UAV and therefore helps to keep the visual target in the camera’s field of view. Simulation results are provided to demonstrate controller performance.

Zusammenfassung

Dieses Papier präsentiert ein auf einem Störungsbeobachter basierendes, eingangsgesättigtes visuelles Regelgesetz für einen unbemannten Quadrokopter (UAV). Der Controller regelt die 4D-relative Pose, d. h., eine 3D-Translations- und Gierbewegung zwischen dem Fahrzeug und einem planaren horizontalen Sichtziel in Umgebungen mit externen Störungen. Eine Vorsteuerung wird verwendet, um die kombinierten Störungen, die sowohl aus Systemunsicherheiten als auch aus externen Störungen bestehen, zu kompensieren. Der Rückkopplungssteuerungsteil basiert auf einer verschachtelten Sättigungssteuerung, die verwendet wird, um die Orientierung des UAV zu begrenzen und daher hilft, das visuelle Ziel im Sichtfeld der Kamera zu halten. Simulationsergebnisse werden bereitgestellt, um die Controller-Leistung zu demonstrieren.

About the authors

Hui Xie

Hui Xie received his B. Sc. degree in mechanical engineering from Harbin Engineering University in 2007, the M. Sc. degree in mechatronics engineering from Harbin Institute of Technology in 2009, and Ph. D. in Electrical and Computer Engineering from the University of Alberta in 2016. Currently, he is a postdoctoral research associate in School of Electrical and Data Engineering, University of Technology Sydney.His research interests include nonlinear control theory, state estimation, and vision-based control with applications to unmanned aerial vehicles and mobile robots.

Zhen He

Zhen He received the Ph. D. degree in automatic control theory and application from Nanjing University of Astronautics and Aeronautics, China, in 2010. She is currently an Associate Professor with Nanjing university of Aeronautics and Astronautics. Her research interests include nonlinear control and flight control.

Darryl Veitch

Darryl Veitch received the B. Sc. degree (Hons.) from Monash University, Australia, in 1985, and the Ph. D. degree in mathematics from the DAMPT, Cambridge, University in 1990. He was with TRL, Telstra, Melbourne, Australia; CNET, France Telecom, Paris, France; KTH, Stockholm, Sweden; INRIA Sophia Antipolis and Paris, France; Bellcore, NJ, USA; RMIT, Melbourne; Technicolor, Paris; and EMUlab and CUBIN, The University of Melbourne, where he was a Professorial Research Fellow until 2014. He is currently a Professor with the School of Computing and Communications, University of Technology Sydney. His research interests are centered on computer networking and inference and include traffic modeling, parameter estimation, the theory and practice of active measurement, traffic sampling and sketching, information theoretic security, and clock synchronisation over networks.

References

1. T. Hamel and R. Mahony, “Visual servoing of an under-actuated dynamic rigid-body system: An image-based approach,” IEEE Trans. Robot. Autom., vol. 18, no. 2, pp. 187–198, 2002.10.1109/TRA.2002.999647Suche in Google Scholar

2. B. Espiau, “Effect of camera calibration errors on visual servoing in robotics,” in Experimental Robotics III, ser. Lecture Notes in Control and Information Sciences, T. Yoshikawa and F. Miyazaki, Eds. Berlin: Springer, 1994, vol. 200, pp. 182–192.10.1007/BFb0027594Suche in Google Scholar

3. H. Xie, “Dynamic visual servoing of rotary wing unmanned aerial vehicles,” Ph. D. dissertation, Dept. Electrical and Computer Engineering, University of Alberta, Edmonton, AB, 2016.Suche in Google Scholar

4. H. Xie and A. Lynch, “State transformation based dynamic visual servoing for an unmanned aerial vehicle,” Int. J. Control, vol. 89, no. 5, pp. 892–908, 2016.10.1080/00207179.2015.1104554Suche in Google Scholar

5. R. Mahony and T. Hamel, “Image-based visual servo control of aerial robotic systems using linear image features,” IEEE Trans. Robot., vol. 21, no. 2, pp. 227–239, 2005.10.1109/TRO.2004.835446Suche in Google Scholar

6. T. Hamel and R. Mahony, “Image based visual servo control for a class of aerial robotic systems,” Automatica, vol. 43, no. 11, pp. 1975–1983, 2007.10.1016/j.automatica.2007.03.030Suche in Google Scholar

7. N. Guenard, T. Hamel, and R. Mahony, “A practical visual servo control for an unmanned aerial vehicle,” IEEE Trans. Robot., vol. 24, no. 2, pp. 331–340, 2008.10.1109/TRO.2008.916666Suche in Google Scholar

8. O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette, T. Hamel, and L. Eck, “Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle,” IEEE Trans. Robot., vol. 25, no. 3, pp. 743–749, 2009.10.1109/TRO.2008.2011419Suche in Google Scholar

9. N. Metni, T. Hamel, and F. Derkx, “Visual tracking control of aerial robotic systems with adaptive depth estimation,” in Proc. 44th IEEE Conf. Decision and Control, and the European Control Conf., Seville, Spain, Dec. 2005, pp. 6078–6084.10.1109/CDC.2005.1583134Suche in Google Scholar

10. H. de Plinval, P. Morin, P. Mouyon, and T. Hamel, “Visual servoing for underactuated VTOL UAVs: A linear, homography-based approach,” in Proc. 2011 IEEE Int. Conf. Robot. Autom., Shanghai, China, May 2011, pp. 3004–3010.10.1109/ICRA.2011.5979741Suche in Google Scholar

11. H. de Plinval, P. Morin, P. Mouyon, and T. Hamel, “Visual servoing for underactuated VTOL UAVs: A linear, homography-based framework,” Int. J. Robust. Nonlin., vol. 24, no. 16, pp. 2285–2308, 2013.10.1002/rnc.2987Suche in Google Scholar

12. R. Ozawa and F. Chaumette, “Dynamic visual servoing with image moments for a quadrotor using a virtual spring approach,” in Proc. 2011 IEEE Int. Conf. Robot. Autom., Shanghai, China, May 2011, pp. 5670–5676.10.1109/ICRA.2011.5979645Suche in Google Scholar

13. R. Ozawa and F. Chaumette, “Dynamic visual servoing with image moments for an unmanned aerial vehicle using a virtual spring approach,” Adv. Robotics, vol. 27, no. 9, pp. 683–696, 2013.10.1080/01691864.2013.776967Suche in Google Scholar

14. H. Jabbari, G. Oriolo, and H. Bolandi, “An adaptive scheme for image-based visual servoing of an underactuated UAV,” Int. J. Robot. Autom., vol. 29, no. 1, pp. 92–104, 2014.10.2316/Journal.206.2014.1.206-3942Suche in Google Scholar

15. D. Lee, H. Lim, H. Kim, Y. Kim, and K. Seong, “Adaptive image-based visual servoing for an underactuated quadrotor system,” J. Guid. Control. Dynam., vol. 35, no. 4, pp. 1335–1353, 2012.10.2514/1.52169Suche in Google Scholar

16. H. Xie, A. F. Lynch, and M. Jagersand, “Dynamic IBVS of a rotary wing UAV using line features,” Robotica, vol. 34, no. 9, pp. 2009–2026, 2016.10.1017/S0263574714002707Suche in Google Scholar

17. A. Abdessameud and F. Janabi-Sharifi, “Image-based tracking control of VTOL unmanned aerial vehicles,” Automatica, vol. 53, pp. 111–119, 2015.10.1016/j.automatica.2014.12.032Suche in Google Scholar

18. H. Xie, G. Fink, A. F. Lynch, and M. Jagersand, “Adaptive visual servoing of UAVs using a virtual camera,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 5, pp. 2529–2538, 2016.10.1109/TAES.2016.15-0155Suche in Google Scholar

19. H. Xie and A. F. Lynch, “Input saturated visual servoing for unmanned aerial vehicles,” IEEE-ASME T. Mech., vol. 22, no. 2, pp. 952–960, 2017.10.1109/TMECH.2016.2608862Suche in Google Scholar

20. H. Jabbari Asl and J. Yoon, “Robust image-based control of the quadrotor unmanned aerial vehicle,” Nonlinear Dynam., vol. 85, no. 3, pp. 2035–2048, 2016.10.1007/s11071-016-2813-2Suche in Google Scholar

21. D. Zheng, H. Wang, J. Wang, S. Chen, W. Chen, and X. Liang, “Image-based visual servoing of a quadrotor using virtual camera approach,” IEEE-ASME T. Mech., vol. 22, no. 2, pp. 972–982, 2017.10.1109/TMECH.2016.2639531Suche in Google Scholar

22. N. Metni and T. Hamel, “A UAV for bridge inspection: Visual servoing control law with orientation limits,” Automat. Constr., vol. 17, no. 1, pp. 3–10, 2007.10.1016/j.autcon.2006.12.010Suche in Google Scholar

23. H. de Plinval and L. Burlion, “Nonlinear visual servoing control for VTOL UAVs with field of view constraint,” in Advances in Aerospace Guidance, Navigation and Control, J. Bordeneuve-Guibé, A. Drouin, and C. Roos, Eds. Springer International Publishing, 2015, pp. 531–548.10.1007/978-3-319-17518-8_31Suche in Google Scholar

24. H. Xie and A. F. Lynch, “Dynamic image-based visual servoing for unmanned aerial vehicles with bounded inputs,” in Proc. 29th IEEE Canadian Conf. on Electrical and Computer Engineering, Vancouver, BC, May 2016, pp. 106–110.10.1109/CCECE.2016.7726618Suche in Google Scholar

25. M. L. Civita, G. Papageorgiou, W. C. Messner, and T. Kanade, “Design and flight testing of an H controller for a robotic helicopter,” J. Guid. Control. Dynam., vol. 29, no. 2, pp. 485–494, 2006.10.2514/1.15796Suche in Google Scholar

26. O. Fritsch, P. D. Monte, M. Buhl, and B. Lohmann, “Quasi-static feedback linearization for the translational dynamics of a quadrotor helicopter,” in Proc. 2012 ACC, Montréal, Canada, June 2012, pp. 125–130.10.1109/ACC.2012.6314682Suche in Google Scholar

27. R. Xu and U. Ozguner, “Sliding mode control of a quadrotor helicopter,” in Proc. 45th IEEE Conf. Decision and Control, San Diego, CA, Dec. 2006, pp. 4957–4962.10.1109/CDC.2006.377588Suche in Google Scholar

28. J. J. Xiong and G. Zhang, “Sliding mode control for a quadrotor UAV with parameter uncertainties,” in Proc. 2nd Int. Conf. Control, Automation and Robotics, Hong Kong, Apr. 2016, pp. 207–212.10.1109/ICCAR.2016.7486727Suche in Google Scholar

29. H. Ramirez-Rodriguez, V. Parra-Vega, A. Sanchez-Orta, and O. Garcia-Salazar, “Robust backstepping control based on integral sliding modes for tracking of quadrotors,” J. Intell. Robot. Syst., vol. 73, no. 1, pp. 51–66, 2014.10.1007/s10846-013-9909-4Suche in Google Scholar

30. A. Roberts and A. Tayebi, “Adaptive position tracking of VTOL UAVs,” IEEE Trans. Robot., vol. 27, no. 1, pp. 129–142, 2011.10.1109/TRO.2010.2092870Suche in Google Scholar

31. E. N. Johnson and S. K. Kannan, “Adaptive trajectory control for autonomous helicopters,” J. Guid. Control. Dynam., vol. 28, no. 3, pp. 524–538, 2005.10.2514/1.6271Suche in Google Scholar

32. F. Yacef, O. Bouhali, M. Hamerlain, and N. Rizoug, “Observer-based adaptive fuzzy backstepping tracking control of quadrotor unmanned aerial vehicle powered by Li-ion battery,” J. Intell. Robot. Syst., vol. 84, no. 1, pp. 179–197, 2016.10.1007/s10846-016-0345-0Suche in Google Scholar

33. C.-T. Lee and C.-C. Tsai, “Adaptive backstepping integral control of a small-scale helicopter for airdrop missions,” Asian J. Control, vol. 12, no. 4, pp. 531–541, 2010.10.1002/asjc.211Suche in Google Scholar

34. S. Bouabdallah, “Design and control of quadrotors with application to autonomous flying,” Ph. D. dissertation, École Polytechnique Fédérale de Luasanne, Lausanne, Switzerland, 2007.Suche in Google Scholar

35. S. Li, J. Yang, W.-H. Chen, and X. Chen, Disturbance Observer-Based Control: Methods and Applications. Boca Raton, FL: CRC Press, 2014.Suche in Google Scholar

36. C. Liu, W.-H. Chen, and J. Andrews, “Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers,” Control Eng. Pract., vol. 20, no. 3, pp. 258–268, 2012.10.1016/j.conengprac.2011.10.015Suche in Google Scholar

37. A. Levant, “Robust exact differentiation via sliding mode technique,” Automatica, vol. 34, no. 3, pp. 379–384, 1998.10.1016/S0005-1098(97)00209-4Suche in Google Scholar

38. M. Chen, P. Shi, and C. C. Lim, “Robust constrained control for MIMO nonlinear systems based on disturbance observer,” IEEE Trans. Automat. Contr., vol. 60, no. 12, pp. 3281–3286, 2015.10.1109/TAC.2015.2450891Suche in Google Scholar

Received: 2017-5-31
Accepted: 2018-1-16
Published Online: 2018-3-13
Published in Print: 2018-3-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/auto-2017-0055/html?lang=de
Button zum nach oben scrollen