Startseite On Green’s function of the Robin problem for the Poisson equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On Green’s function of the Robin problem for the Poisson equation

  • Valery V. Karachik ORCID logo und Batirkhan K. Turmetov EMAIL logo
Veröffentlicht/Copyright: 28. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An explicit representation of the Green function of the Robin problem for the Poisson equation in the unit ball is given.

MSC 2010: 35J08; 31A30; 31A25

Award Identifier / Grant number: 02.A03.21.0011

Award Identifier / Grant number: AP05131268/GF

Funding statement: The work was supported by Act 211 of the Government of the Russian Federation, contract no. 02.A03.21.0011, and by a grant from the Ministry of Science and Education of the Republic of Kazakhstan (grant no. AP05131268/GF).

References

[1] H. Begehr and T. Vaitekhovich, Modified harmonic Robin function, Complex Var. Elliptic Equ. 58 (2013), no. 4, 483–496. 10.1080/17476933.2011.625092Suche in Google Scholar

[2] A. V. Bitsadze, Equations of Mathematical Physics (in Russian), 2nd ed., “Nauka”, Moscow, 1982. Suche in Google Scholar

[3] E. Constantin and N. H. Pavel, Green function of the Laplacian for the Neumann problem in +n, Lib. Math. 30 (2010), 57–69. Suche in Google Scholar

[4] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Higher, Tricomi Transcendental Functions (Bateman Manuscript Project), McGraw-Hill, New York, 1953. Suche in Google Scholar

[5] T. S. Kal’menov, B. D. Koshanov and M. Y. Nemchenko, The Green function representation in the Dirichlet problem for polyharmonic equations in a ball, Dokl. Akad. Nauk 421 (2008), no. 3, 305–307. 10.1134/S1064562408040169Suche in Google Scholar

[6] T. S. Kal’menov and D. Suragan, On a new method for constructing the Green function of the Dirichlet problem for the polyharmonic equation, Differ. Equ. 48 (2012), no. 3, 441–445. 10.1134/S0012266112030160Suche in Google Scholar

[7] V. V. Karachik, On one set of orthogonal harmonic polynomials, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3513–3519. 10.1090/S0002-9939-98-05019-9Suche in Google Scholar

[8] V. V. Karachik, On an expansion of Almansi type, Math. Notes 83 (2008), no. 3–no. 4, 335–344. 10.1134/S000143460803005XSuche in Google Scholar

[9] V. V. Karachik, Construction of polynomial solutions of some boundary value problems for the Poisson’s equation, Comput. Math. Math. Phys. 51 (2011), no. 9, 1567–1587. 10.1134/S0965542511090120Suche in Google Scholar

[10] V. V. Karachik, On solvability conditions for the Neumann problem for a polyharmonic equation in the unit ball, J. Appl. Ind. Math. 8 (2014), no. 1, 63–75. 10.1134/S1990478914010074Suche in Google Scholar

[11] V. V. Karachik, Construction of polynomial solutions to the Dirichlet problem for the polyharmonic equation in a ball, Comput. Math. Math. Phys. 54 (2014), no. 7, 1122–1143. 10.1134/S0965542514070070Suche in Google Scholar

[12] V. V. Karachik, Green function of the Dirichlet boundary value problem for polyharmonic equation in a ball under polynomial data, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 14 (2014), no. 4, 550–558. 10.18500/1816-9791-2014-14-4-550-558Suche in Google Scholar

[13] V. V. Karachik, Solution of the Dirichlet problem with polynomial data for the polyharmonic equation in a ball, Differ. Equ. 51 (2015), no. 8, 1033–1042. 10.1134/S0012266115080078Suche in Google Scholar

[14] V. V. Karachik, A Neumann-type problem for the biharmonic equation, Siberian Adv. Math. 27 (2017), no. 2, 103–118. 10.3103/S105513441702002XSuche in Google Scholar

[15] V. V. Karachik and N. A. Antropova, Polynomial solutions of the Dirichlet problem for the biharmonic equation in the ball, Differ. Equ. 49 (2013), no. 2, 251–256. 10.1134/S0012266113020122Suche in Google Scholar

[16] V. V. Karachik and B. T. Torebek, On the Dirichlet–Riquier problem for biharmonic equations, Math. Notes 102 (2017), no. 1–no. 2, 31–42. 10.1134/S0001434617070045Suche in Google Scholar

[17] M. A. Sadybekov, B. T. Torebek and B. K. Turmetov, Representation of Green’s function of the Neumann problem for a multi-dimensional ball, Complex Var. Elliptic Equ. 61 (2016), no. 1, 104–123. 10.1080/17476933.2015.1064402Suche in Google Scholar

[18] M. A. Sadybekov, B. T. Torebek and B. K. Turmetov, Representation of the Green’s function of the exterior Neumann problem for the Laplace operator, Sibirsk. Mat. Zh. 58 (2017), no. 1, 199–205. 10.1134/S0037446617010190Suche in Google Scholar

[19] M. A. Sadybekov, B. K. Turmetov and B. T. Torebek, On an explicit form of the Green function of the third boundary value problem for the Poisson equation in a circle, AIP Conf. Proc. 1611 (2014), 255–260. 10.1063/1.4893843Suche in Google Scholar

[20] M. A. Sadybekov, B. K. Turmetov and B. T. Torebek, On an explicit form of the Green function of the Robin problem for the Laplace operator in a circle, Adv. Pure Appl. Math. 6 (2015), no. 3, 163–172. 10.1515/apam-2015-0003Suche in Google Scholar

[21] V. S. Vladimirov, Equations of Mathematical Physics, “Mir”, Moscow, 1984. Suche in Google Scholar

[22] Y. Wang, Tri-harmonic boundary value problems in a sector, Complex Var. Elliptic Equ. 59 (2014), no. 5, 732–749. 10.1080/17476933.2012.759566Suche in Google Scholar

[23] Y. Wang and L. Ye, Biharmonic Green function and biharmonic Neumann function in a sector, Complex Var. Elliptic Equ. 58 (2013), no. 1, 7–22. 10.1080/17476933.2010.551199Suche in Google Scholar

Received: 2017-10-19
Revised: 2018-01-22
Accepted: 2018-03-03
Published Online: 2018-03-28
Published in Print: 2019-07-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/apam-2017-0113/html?lang=de
Button zum nach oben scrollen