Startseite On a Caputo-type fractional derivative
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On a Caputo-type fractional derivative

  • Daniela S. Oliveira EMAIL logo und Edmundo Capelas de Oliveira
Veröffentlicht/Copyright: 23. Januar 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we present a new differential operator of arbitrary order defined by means of a Caputo-type modification of the generalized fractional derivative recently proposed by Katugampola. The generalized fractional derivative, when convenient limits are considered, recovers the Riemann–Liouville and the Hadamard derivatives of arbitrary order. Our differential operator recovers as limiting cases the arbitrary order derivatives proposed by Caputo and by Caputo–Hadamard. Some properties are presented as well as the relation between this differential operator of arbitrary order and the Katugampola generalized fractional operator. As an application we prove the fundamental theorem of fractional calculus associated with our operator.

MSC 2010: 26A33

Acknowledgements

We are indebted to Dr. J. Emílio Maiorino for useful and fruitful discussions. We are grateful to the referees for the suggestions which have helped make this work clearer.

References

[1] R. Almeida, A. B. Malinowska and T. Odzijewicz, Fractional differential equations with dependence on the Caputo–Katugampola derivative, J. Comput. Nonlinear Dynam. 11 (2016), Paper No. CND-15-1334. 10.1115/1.4034432Suche in Google Scholar

[2] E. Capelas de Oliveira and J. A. Tenreiro Machado, A review of definitions for fractional derivatives and integral, Math. Probl. Eng. 2014 (2014), Article ID 238459. 10.1155/2014/238459Suche in Google Scholar

[3] E. Contharteze Grigoletto and E. Capelas de Oliveira, Fractional version of the fundamental theorem of calculus, Appl. Math. 4 (2013), 23–33. 10.4236/am.2013.47A006Suche in Google Scholar

[4] R. Figueiredo Camargo and E. Capelas de Oliveira, Fractional Calculus (in Portuguese), Editora Livraria da Física, São Paulo, 2015. Suche in Google Scholar

[5] Y. Y. Gambo, F. Jarad, D. Baleanu and T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Difference Equ. 2014 (2014), 10.1186/1687-1847-2014-10. 10.1186/1687-1847-2014-10Suche in Google Scholar

[6] J. Hadamard, Essai sur l’étude des fonctions données par leur développement de Taylor, J. Math. Pures Appl. (4) 8 (1892), 101–186. Suche in Google Scholar

[7] F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Difference Equ. 2012 (2012), 10.1186/1687-1847-2012-142. 10.1186/1687-1847-2012-142Suche in Google Scholar

[8] F. Jarad, T. Abdeljawad and D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl. 10 (2017), no. 5, 2607–2619. 10.22436/jnsa.010.05.27Suche in Google Scholar

[9] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput. 218 (2011), no. 3, 860–865. 10.1016/j.amc.2011.03.062Suche in Google Scholar

[10] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6 (2014), no. 4, 1–15. Suche in Google Scholar

[11] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006. Suche in Google Scholar

[12] A. Laforgia and P. Natalini, On the asymptotic expansion of a ratio of gamma functions, J. Math. Anal. Appl. 389 (2012), no. 2, 833–837. 10.1016/j.jmaa.2011.12.025Suche in Google Scholar

[13] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993. Suche in Google Scholar

[14] M. D. Ortigueira and J. A. Tenreiro Machado, What is a fractional derivative?, J. Comput. Phys. 293 (2015), 4–13. 10.1016/j.jcp.2014.07.019Suche in Google Scholar

[15] B. Ross, A brief history and exposition of the fundamental theory of fractional calculus, Fractional Calculus and its Applications, Springer, Berlin (1975), 1–36. 10.1007/BFb0067096Suche in Google Scholar

[16] H. L. Royden and P. Fitzpatrick, Real Analysis, Prentice Hall, Boston, 2010. Suche in Google Scholar

[17] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon & Breach Science, Yverdon, 1993. Suche in Google Scholar

[18] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. 10.1142/9069Suche in Google Scholar

Received: 2017-06-04
Revised: 2017-12-13
Accepted: 2017-12-14
Published Online: 2018-01-23
Published in Print: 2019-04-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/apam-2017-0068/html
Button zum nach oben scrollen