Abstract
The object of the present paper is to study generalized Sasakian-space-forms satisfying the curvature condition
Acknowledgements
The authors thank the referees for their valuable suggestions for improving the paper.
References
[1] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math. 141 (2004), 157–183. 10.1007/BF02772217Suche in Google Scholar
[2] P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geom. Appl. 26 (2008), no. 6, 656–666. 10.1016/j.difgeo.2008.04.014Suche in Google Scholar
[3] P. Alegre and A. Carriazo, Submanifolds of generalized Sasakian space forms, Taiwanese J. Math. 13 (2009), no. 3, 923–941. 10.11650/twjm/1500405448Suche in Google Scholar
[4] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976. 10.1007/BFb0079307Suche in Google Scholar
[5] S. K. Chaubey and R. H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold, Differ. Geom. Dyn. Syst. 12 (2010), 52–60. Suche in Google Scholar
[6] U. C. De and P. Majhi, Certain curvature properties of generalized Sasakian-space-forms, Facta Univ. Ser. Math. Inform. 27 (2012), no. 3, 271–282. 10.1007/s40010-012-0062-4Suche in Google Scholar
[7] U. C. De and P. Majhi, ϕ-semisymmetric generalized Sasakian space-forms, Arab J. Math. Sci. 21 (2015), no. 2, 170–178. 10.1016/j.ajmsc.2015.01.002Suche in Google Scholar
[8] U. C. De and A. Sarkar, On the projective curvature tensor of generalized Sasakian-space-forms, Quaest. Math. 33 (2010), no. 2, 245–252. 10.2989/16073606.2010.491203Suche in Google Scholar
[9] F. Gherib, M. Gorine and M. Belkhelfa, Parallel and semi symmetry of some tensors in generalized Sasakian space forms, Bull. Transilv. Univ. Braşov Ser. III 1(50) (2008), 139–148. Suche in Google Scholar
[10] U. K. Kim, Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note Mat. 26 (2006), no. 1, 55–67. Suche in Google Scholar
[11] R. Ojha, A note on the M-projective curvature tensor, Indian J. Pure Appl. Math. 8 (1977), no. 12, 1531–1534. Suche in Google Scholar
[12] G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance. II, Yokohama Math. J. 19 (1971), no. 2, 97–103. Suche in Google Scholar
[13] B. Prasad, A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc. 94 (2002), no. 3, 163–166. Suche in Google Scholar
[14] A. Sarkar and U. C. De, Some curvature properties of generalized Sasakian-space-forms, Lobachevskii J. Math. 33 (2012), no. 1, 22–27. 10.1134/S1995080212010088Suche in Google Scholar
[15] J. P. Singh, Generalized Sasakian space forms with m-projective curvature tensor, Acta Math. Univ. Comenian. (N.S.) 85 (2016), no. 1, 135–146. Suche in Google Scholar
[16] Venkatesha and B. Sumangala, On M-projective curvature tensor of a generalized Sasakian space form, Acta Math. Univ. Comenian. (N.S.) 82 (2013), no. 2, 209–217. Suche in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A priori error analysis of the implicit Euler, spectral discretization of a nonlinear equation for a flow in a partially saturated porous media
- Sharp geometric requirements in the Wachspress interpolation error estimate
- Kolmogorov--Sinai entropy for p-preserving systems
- A note on the relation between categories and hyperstructures
- On generalized Sasakian-space-forms with M-projective curvature tensor
Artikel in diesem Heft
- Frontmatter
- A priori error analysis of the implicit Euler, spectral discretization of a nonlinear equation for a flow in a partially saturated porous media
- Sharp geometric requirements in the Wachspress interpolation error estimate
- Kolmogorov--Sinai entropy for p-preserving systems
- A note on the relation between categories and hyperstructures
- On generalized Sasakian-space-forms with M-projective curvature tensor