A priori error analysis of the implicit Euler, spectral discretization of a nonlinear equation for a flow in a partially saturated porous media
Abstract
The aim of this work is the numerical study of a nonlinear equation, which models the water flow in a partially saturated underground porous medium under the surface. We propose a discretization of this equation that combines Euler’s implicit scheme in time and spectral methods in space. We prove optimal error estimates between the continuous and discrete solutions. Some numerical experiments confirm the interest of this approach. We present numerical experiments which are in perfect coherence with the analysis.
Acknowledgements
We are deeply grateful to Linda El Alaoui who revealed us the existence of this equation due to Richards and showed her high interest for our work.
References
[1] H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183 (1983), 311–341. 10.1007/BF01176474Suche in Google Scholar
[2] T. Arbogast, An error analysis for Galerkin approximations to an equation of mixed elliptic-parabolic type, Technical Report TR90-33, Department of Computational and Applied Mathematics, Rice University, Houston, 1990. Suche in Google Scholar
[3] T. Arbogast, M. Obeyesekere and M. F. Wheeler, Numerical methods for the simulation of flow in root-soil systems, SIAM J. Numer. Anal. 30 (1993), 1677–1702. 10.1137/0730086Suche in Google Scholar
[4] T. Arbogast, M. F. Wheeler and N. Y. Zhang, A non-linear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal. 33 (1996), 1669–1687. 10.1137/S0036142994266728Suche in Google Scholar
[5] M. Azaïez, F. Ben Belgacem, M. Grundmann and H. Khallouf, Staggered grids hybrid-dual spectral element method for second order elliptic problems. Application to high-order time splitting for Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg. 166 (1998), 183–199. 10.1016/S0045-7825(98)00069-3Suche in Google Scholar
[6] J. W. Barrett and P. Knabner, Finite element approximation of the transport of reactive solutes in porous media. Part II: Error estimates for equilibrium adsorption processes, SIAM J. Numer. Anal. 34 (1997), 455–479. 10.1137/S0036142993258191Suche in Google Scholar
[7] J.-M. Bernard, Density results in Sobolev spaces whose elements vanish on a part of the boundary, Chin. Ann. Math. Ser. B 32 (2011), 823–846. 10.1007/s11401-011-0682-zSuche in Google Scholar
[8] C. Bernardi, L. El Alaoui and Z. Mghazli, A posteriori analysis of a space and time discretization of a nonlinear model for the flow in partially saturated porous media, IMA J. Numer. Anal. 34 (2014), 1002–1036. 10.1093/imanum/drt014Suche in Google Scholar
[9] C. Bernardi and Y. Maday, Spectral methods, Handbook of Numerical Analysis. Vol. 5, North-Holland, Amsterdam (1997), 209–485. 10.1016/S1570-8659(97)80003-8Suche in Google Scholar
[10] C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Math. Appl. (Berlin) 45, Springer, Berlin, 2004. Suche in Google Scholar
[11] H. Brezis and P. Mironescu, Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ. 1 (2001), 387–404. 10.1007/PL00001378Suche in Google Scholar
[12] F. Brezzi, J. Rappaz and P.-A. Raviart, Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions, Numer. Math. 36 (1980), 1–25. 10.1007/BF01395985Suche in Google Scholar
[13] S. Del Pino and O. Pironneau, A fictitious domain based on general pde’s solvers, Numerical Methods for Scientific Computing Variational Problems and Applications, CIMNE, Barcelona (2003), 1–11. Suche in Google Scholar
[14] R. Eymard, M. Gutnic and D. Hilhorst, The finite volume method for Richards equation, Comput. Geosci. 3 (1999), 259–294. 10.1023/A:1011547513583Suche in Google Scholar
[15] M. Gabbouhy, Analyse mathématique et simulation numérique des phénomènes d’écoulement et de transport en milieux poreux non saturés. Application à la région du Gharb, Ph.D. thesis, Université Ibn Tofail, Kénitra, 2000. Suche in Google Scholar
[16] S. M. F. Garcia, Improved error estimates for mixed finite-element approximations for nonlinear parabolic equations: The continuous-time case, Numer. Methods Partial Differential Equations 10 (1994), 129–147. 10.1002/num.1690100202Suche in Google Scholar
[17] S. M. F. Garcia, Improved error estimates for mixed finite-element approximations for nonlinear parabolic equations: The discrete-time case, Numer. Methods Partial Differential Equations 10 (1994), 149–169. 10.1002/num.1690100203Suche in Google Scholar
[18] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms, Springer, Berlin, 1986. 10.1007/978-3-642-61623-5Suche in Google Scholar
[19] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod & Gauthier–Villars, Paris, 1969. Suche in Google Scholar
[20] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. I, Dunod, Paris, 1968. Suche in Google Scholar
[21] F. List and F. Radu, A study on iterative methods for Richards’ equation, Comput. Geosci. 20 (2016), no. 2, 341–353. 10.1007/s10596-016-9566-3Suche in Google Scholar
[22] Y. Maday and E. M. Rønquist, Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries, Comput. Methods Appl. Mech. Engrg. 80 (1990), 91–115. 10.1016/0045-7825(90)90016-FSuche in Google Scholar
[23]
J.-C. Nédélec,
Mixed finite elements in
[24] I. S. Pop, F. Radu and P. Knabner, Mixed finite elemets for the Richards’ equations: Linearization procedure, J. Comput. Appl. Math. 168 (2004), 365–373. 10.1016/j.cam.2003.04.008Suche in Google Scholar
[25] F. Radu, I. S. Pop and S. Attinger, Analysis of an Euler implicit-mixed finite element scheme for reactive solute transport in porous media, Numer. Methods Partial Differential Equations 26 (2010), no. 2, 320–344. 10.1002/num.20436Suche in Google Scholar
[26] F. Radu, I. S. Pop and P. Knabner, Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation, SIAM J. Numer. Anal. 42 (2004), 1452–1478. 10.1137/S0036142902405229Suche in Google Scholar
[27] F. Radu, I. S. Pop and P. Knabner, Error estimates for a mixed finite element discretization of some degenerate parabolic equations, Numer. Math. 109 (2008), 285–311. 10.1007/s00211-008-0139-9Suche in Google Scholar
[28] K. R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solid, Math. Models Methods Appl. Sci. 17 (2007), 215–252. 10.1142/S0218202507001899Suche in Google Scholar
[29] L. A. Richards, Capillary conduction of liquids through porous mediums, AIP J. Appl. Phys. 1 (1931), 318–333. 10.1063/1.1745010Suche in Google Scholar
[30] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986), no. 3, 856–869. 10.1137/0907058Suche in Google Scholar
[31] M. Schatzman, Analyse numérique, Dunod, Paris, 1991. Suche in Google Scholar
[32] E. Schneid, P. Knabner and F. Radu, A priori error estimates for a mixed finite element discretization of the Richards’ equation, Numer. Math. 98 (2004), 353–370. 10.1007/s00211-003-0509-2Suche in Google Scholar
[33] M. Slodicka, A robust and efficient linearization scheme for doubly nonlinear degenerate parabolic problems arising in flow in porous media, SIAM J. Sci. Comput. 23 (2002), 1593–1614. 10.1137/S1064827500381860Suche in Google Scholar
[34] P. Sochala, A. Ern and S. Piperno, Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows, Comput. Methods Appl. Mech. Engrg. 198 (2009), 2122–2136. 10.1016/j.cma.2009.02.024Suche in Google Scholar
[35] P. Sochala, A. Ern and S. Piperno, Numerical methods for subsurface flows and coupling with surface runoff, in preparation. 10.2174/978160805254711201010032Suche in Google Scholar
[36] C. S. Woodward and C. N. Dawson, Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media, SIAM J. Numer. Anal. 37 (2000), 701–724. 10.1137/S0036142996311040Suche in Google Scholar
[37] D. Yakoubi, Analyse et mise en øuvre de nouveaux algorithmes en méthodes spectrales, Ph.D. thesis, Université Pierre et Marie Curie, Paris, 2007. Suche in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A priori error analysis of the implicit Euler, spectral discretization of a nonlinear equation for a flow in a partially saturated porous media
- Sharp geometric requirements in the Wachspress interpolation error estimate
- Kolmogorov--Sinai entropy for p-preserving systems
- A note on the relation between categories and hyperstructures
- On generalized Sasakian-space-forms with M-projective curvature tensor
Artikel in diesem Heft
- Frontmatter
- A priori error analysis of the implicit Euler, spectral discretization of a nonlinear equation for a flow in a partially saturated porous media
- Sharp geometric requirements in the Wachspress interpolation error estimate
- Kolmogorov--Sinai entropy for p-preserving systems
- A note on the relation between categories and hyperstructures
- On generalized Sasakian-space-forms with M-projective curvature tensor