Startseite Some Steffensen-type inequalities
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some Steffensen-type inequalities

  • Mohammad W. Alomari ORCID logo EMAIL logo , Sabir Hussain und Zheng Liu
Veröffentlicht/Copyright: 19. April 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, new inequalities connected with the celebrated Steffensen’s integral inequality are proved.

MSC 2010: 26D15; 26D10

Acknowledgements

The authors wish to thank the anonymous referee for his careful reading and for providing fruitful comments that helped improving the presentation of this article.

References

[1] M. W. Alomari, New inequalities of Steffensen’s type for s–convex functions, Afr. Mat. (2013), 10.1007/s13370-013-0175-1. 10.1007/s13370-013-0175-1Suche in Google Scholar

[2] A. Apéry, Une inégalité sur les fonctions de variable réelle, Atti IV. Congr. Un. Mat. Ital. 2 (1953), 3–4. Suche in Google Scholar

[3] J. Barić and J. Pečarić, On the bounds for the normalized functional and Jensen–Steffensen inequality, Math. Inequal. Appl. 12 (2009), no. 2, 413–432. 10.7153/mia-12-32Suche in Google Scholar

[4] P. Cerone, On some generalizations of Steffensen’s inequality and related results, J. Inequal. Pure Appl. Math. 3 (2001), no. 2, Article No. 28. Suche in Google Scholar

[5] I. Franjić, S. Khalid and J. Pečarić, On the refinements of the Jensen–Steffensen inequality, J. Inequal. Appl. 2011 (2011), 10.1186/1029-242X-2011-12. 10.1186/1029-242X-2011-12Suche in Google Scholar

[6] H. Gauchmana, Steffensen type inequality, J. Inequal. Pure Appl. Math. 1 (2000), no. 1, Article No. 3. Suche in Google Scholar

[7] T. Hayashi, On curves with monotonous curvature, Tohoku Math. J. 15 (1919), 236–239. Suche in Google Scholar

[8] Z. Liu, More on Steffensen type inequalities, Soochow J. Math. 31 (2005), no. 3, 429–439. Suche in Google Scholar

[9] Z. Liu, On Steffensen type inequalities, J. Nanjing Univ. Math. Biq. 19 (2002), no. 2, 25–30. Suche in Google Scholar

[10] P. R. Mercer, Error terms for Steffensen’s, Young’s, and Chebychev’s inequalities, J. Math. Inequal. 2 (2008), no. 4, 479–486. 10.7153/jmi-02-43Suche in Google Scholar

[11] P. R. Mercer, Extensions of Steffensen’s inequality, J. Math. Anal. Appl. 246 (2000), 325–329. 10.1006/jmaa.2000.6822Suche in Google Scholar

[12] B. Meidell, Note sur quelques inégalités et formules d’approximation, Scand. Actuar. J. 10 (1918), 180–198. 10.1080/03461238.1918.10405308Suche in Google Scholar

[13] D. S. Mitrinović, The Steffensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 247–273 (1969), 1–14. Suche in Google Scholar

[14] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and new Inequalities in Analysis, Kluwer, Dordrecht, 1993. 10.1007/978-94-017-1043-5Suche in Google Scholar

[15] D. S. Mitrinovič and J. E. Pećarič, On the Bellman generalization of Steffensen inequality. III, J. Math. Anal. Appl. 135 (1988), 342–345. 10.1016/0022-247X(88)90158-8Suche in Google Scholar

[16] F.-C. Mitroi, About the precision in Jensen–Steffensen inequality, An. Univ. Craiova Ser. Mat. Inform. 37 (2010), no. 4, 73–84. Suche in Google Scholar

[17] I. P. Natanson, Theory of Functions of a Real Variable. Vol I, Frederick Ungar Publishing, New York, 1955. Suche in Google Scholar

[18] C. P. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books Math./Ouvrages Math. SMC 23, Springer, New York, 2006. 10.1007/0-387-31077-0Suche in Google Scholar

[19] A. Ostrowski, Aufgabensammlung zur Infinitesimalrechnung. Band 1: Funktionen einer Variablen, Birkhäuser, Basel, 1964. 10.1007/978-3-0348-4146-7Suche in Google Scholar

[20] J. F. Steffensen, On certain inequalities between mean values and their application to actuarial problems, Scand. Actuar. J. 1 (1918), 82–97. 10.1080/03461238.1918.10405302Suche in Google Scholar

Received: 2016-6-4
Revised: 2017-2-19
Accepted: 2017-3-2
Published Online: 2017-4-19
Published in Print: 2017-7-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/apam-2016-0052/html
Button zum nach oben scrollen