Abstract
In this paper, new inequalities connected with the celebrated Steffensen’s integral inequality are proved.
Acknowledgements
The authors wish to thank the anonymous referee for his careful reading and for providing fruitful comments that helped improving the presentation of this article.
References
[1] M. W. Alomari, New inequalities of Steffensen’s type for s–convex functions, Afr. Mat. (2013), 10.1007/s13370-013-0175-1. 10.1007/s13370-013-0175-1Suche in Google Scholar
[2] A. Apéry, Une inégalité sur les fonctions de variable réelle, Atti IV. Congr. Un. Mat. Ital. 2 (1953), 3–4. Suche in Google Scholar
[3] J. Barić and J. Pečarić, On the bounds for the normalized functional and Jensen–Steffensen inequality, Math. Inequal. Appl. 12 (2009), no. 2, 413–432. 10.7153/mia-12-32Suche in Google Scholar
[4] P. Cerone, On some generalizations of Steffensen’s inequality and related results, J. Inequal. Pure Appl. Math. 3 (2001), no. 2, Article No. 28. Suche in Google Scholar
[5] I. Franjić, S. Khalid and J. Pečarić, On the refinements of the Jensen–Steffensen inequality, J. Inequal. Appl. 2011 (2011), 10.1186/1029-242X-2011-12. 10.1186/1029-242X-2011-12Suche in Google Scholar
[6] H. Gauchmana, Steffensen type inequality, J. Inequal. Pure Appl. Math. 1 (2000), no. 1, Article No. 3. Suche in Google Scholar
[7] T. Hayashi, On curves with monotonous curvature, Tohoku Math. J. 15 (1919), 236–239. Suche in Google Scholar
[8] Z. Liu, More on Steffensen type inequalities, Soochow J. Math. 31 (2005), no. 3, 429–439. Suche in Google Scholar
[9] Z. Liu, On Steffensen type inequalities, J. Nanjing Univ. Math. Biq. 19 (2002), no. 2, 25–30. Suche in Google Scholar
[10] P. R. Mercer, Error terms for Steffensen’s, Young’s, and Chebychev’s inequalities, J. Math. Inequal. 2 (2008), no. 4, 479–486. 10.7153/jmi-02-43Suche in Google Scholar
[11] P. R. Mercer, Extensions of Steffensen’s inequality, J. Math. Anal. Appl. 246 (2000), 325–329. 10.1006/jmaa.2000.6822Suche in Google Scholar
[12] B. Meidell, Note sur quelques inégalités et formules d’approximation, Scand. Actuar. J. 10 (1918), 180–198. 10.1080/03461238.1918.10405308Suche in Google Scholar
[13] D. S. Mitrinović, The Steffensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 247–273 (1969), 1–14. Suche in Google Scholar
[14] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and new Inequalities in Analysis, Kluwer, Dordrecht, 1993. 10.1007/978-94-017-1043-5Suche in Google Scholar
[15] D. S. Mitrinovič and J. E. Pećarič, On the Bellman generalization of Steffensen inequality. III, J. Math. Anal. Appl. 135 (1988), 342–345. 10.1016/0022-247X(88)90158-8Suche in Google Scholar
[16] F.-C. Mitroi, About the precision in Jensen–Steffensen inequality, An. Univ. Craiova Ser. Mat. Inform. 37 (2010), no. 4, 73–84. Suche in Google Scholar
[17] I. P. Natanson, Theory of Functions of a Real Variable. Vol I, Frederick Ungar Publishing, New York, 1955. Suche in Google Scholar
[18] C. P. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books Math./Ouvrages Math. SMC 23, Springer, New York, 2006. 10.1007/0-387-31077-0Suche in Google Scholar
[19] A. Ostrowski, Aufgabensammlung zur Infinitesimalrechnung. Band 1: Funktionen einer Variablen, Birkhäuser, Basel, 1964. 10.1007/978-3-0348-4146-7Suche in Google Scholar
[20] J. F. Steffensen, On certain inequalities between mean values and their application to actuarial problems, Scand. Actuar. J. 1 (1918), 82–97. 10.1080/03461238.1918.10405302Suche in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Quasi-conformal curvature tensor with respect to a semi-symmetric non-metric connection in a Kenmotsu manifold
- Some new oscillation theorems for second-order Euler-type differential equations with mixed neutral terms
- On the uniqueness of certain type of differential-difference polynomials sharing a polynomial
- Existence results for a Kirchhoff type equation in Orlicz–Sobolev spaces
- Existence and characterization of best φ-approximations by linear subspaces
- Some Steffensen-type inequalities
Artikel in diesem Heft
- Frontmatter
- Quasi-conformal curvature tensor with respect to a semi-symmetric non-metric connection in a Kenmotsu manifold
- Some new oscillation theorems for second-order Euler-type differential equations with mixed neutral terms
- On the uniqueness of certain type of differential-difference polynomials sharing a polynomial
- Existence results for a Kirchhoff type equation in Orlicz–Sobolev spaces
- Existence and characterization of best φ-approximations by linear subspaces
- Some Steffensen-type inequalities