Abstract
This paper is concerned with a new type of matrix. This class of matrix is a generalization of the r-circulant matrix, and we call it (r,s)-pair circulant matrix. Some properties such as sum, difference, product, inverse and adjoint of (r,s)-pair circulant matrices are investigated. Moreover, we give some necessary and sufficient conditions for a matrix to be an (r,s)-pair circulant matrix. Finally, an algorithm for computing the inverse or generalized inverse of an (r,s)-pair circulant matrix is presented, some numerical examples are also given.
Received: 2014-6-13
Accepted: 2014-7-14
Published Online: 2014-7-24
Published in Print: 2014-11-1
© 2014 by De Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Frontmatter
- On the properties and (generalized) inverses of (r,s)-pair circulant matrices
- On the stability of the generalized mixed trigonometric functional equations
- A note on nilpotent rings
- Compactness via the Berezin transform of radial operators on the generalized Fock spaces
- Frame properties of low autocorrelation random sequences
Schlagwörter für diesen Artikel
(r,s)-pair circulant matrix;
group inverse;
Drazin inverse;
Euclidean algorithm
Artikel in diesem Heft
- Frontmatter
- On the properties and (generalized) inverses of (r,s)-pair circulant matrices
- On the stability of the generalized mixed trigonometric functional equations
- A note on nilpotent rings
- Compactness via the Berezin transform of radial operators on the generalized Fock spaces
- Frame properties of low autocorrelation random sequences