Startseite Ascaridia galli isolates with ITS1-5.8rRNA-ITS2 fragment homologous to Ascaridia columbae
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ascaridia galli isolates with ITS1-5.8rRNA-ITS2 fragment homologous to Ascaridia columbae

  • Joanna Urbanowicz , Andrzej Gaweł und Kamila Bobrek EMAIL logo
Veröffentlicht/Copyright: 4. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ascaridia (A.) galli is one of the most commonly occurring nematodes in poultry worldwide, often in hens and broiler chickens. The infection with Ascaridia galli in free-range chickens was even 70%. There is not much information about A. galli genetic features. The present study was conducted to assess the genetic diversity of A. galli isolated from hens in Poland by analyzing the nucleotide sequence of the region ITS1-5.8rRNA-ITS2 and to define its homology within the family Ascaridiidae. Adult A. galli were collected from the intestines of naturally infected hens from two flocks of free-run laying hens from the Wielkopolska region in Poland. From all parasites an identical ITS1-5.8rRNA-ITS2 sequence was obtained, which was homologous in 99% with A. columbae (JQ995321.1) sequence. The high homology sequences of A. galli (KX683286) from Poland and A. columbae (JQ995321.1) isolate from the USA, support the observations of other authors suggesting that A. galli and A. columbae might be closely related. It is the first whole ITS1-5.8rRNA-ITS2 of A. galli in the GenBank database, so there is not enough data for detailed phylogenetic analysis of A. galli. Detailed genetic analysis is necessary to get better insight into the birds’ Ascaridia species.

Abbreviations

ITS

internal transcribed spacers (ITS)

Acknowledgements

Research supported by Wroclaw Center of Biotechnology, programme The Leading National Research Center (KNOW) for years 2014–2018.

References

Adamson M. 1987. Phylogenetic analysis of the higher classification of the Nematoda. Canadian Journal of Zoology, 65, 1478–148210.1139/z87-230Suche in Google Scholar

Anderson T.J. 2001. The dangers of using single locus markers in parasite epidemiology: Ascaris as a case study. Trends in Parasitology, 17,183–18810.1016/S1471-4922(00)01944-9Suche in Google Scholar

Blaxter ML., De Ley P., Garey J. R., Liu L.X., Scheldeman P., Vierstraete A., et al. 1998. A molecular evolutionary framework for the phylum Nematoda. Nature, 392, 71–75. 10.1038/32160Suche in Google Scholar

Bazh E.K. 2013. Molecular characterization of Ascaridia galli infecting native chickens in Egypt. Parasitology Research, 112, 3223–3227. 10.1007/s00436-013-3498-9.Suche in Google Scholar

Chadfield M.S., Permin A., Nansen P., Bisgaard M. 2001. Investigation of the parasitic nematode Ascaridia galli as a potential vector for Salmonella dissemination in broiler poultry. Parasitology Research, 87, 317–32510.1007/PL00008585Suche in Google Scholar

Chilton N.B., Gasser R.B., Beveridge I. 1997. Phylogenetic relationships of Australian strongyloid nematodes inferred from ribosomal DNA sequence data. International Journal of Parasitology, 27, 1481–149410.1016/S0020-7519(97)00134-3Suche in Google Scholar

Długosz E., Wiśniewski M. 2006. Molecular diagnostic of parasites using rRNA gene sequence. Wiadomości Parazytologiczne, 52, 263–269Suche in Google Scholar

Everett E., Hwang J.C., Hwang W. 1914. The Life Cycle and Morphology of Ascaridia columbae (Gmelin, 1790) Travassos, (Nematoda:Ascarididae) in the Domestic Pigeon (Columba livia domestica). Journal of Parasitology, 50, 131–13710.2307/3276047Suche in Google Scholar

Höglund J., Morrison D.A., Engström A., Nejsum P., Jansson D.S. 2012. Population genetic structure of Ascaridia galli re-emerging in non-caged laying hens. Parasites and Vectors, 20, 5–9. 10.1186/1756-3305-5-97Suche in Google Scholar PubMed PubMed Central

Inglis W.G. 1983. An outline classification on the Phylum Nematoda. Australian Journal of Zoology, 31, 243–25510.1071/ZO9830243Suche in Google Scholar

Lin Q., Li H.M., Gao M., Wang X.Y., Ren W.X, Cong M.M., et al. 2012. Characterization of Baylisascaris schroederi from Qinling subspecies of giant panda in China by the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA. Parasitology Research, 110, 1297–1303. 10.1007/s00436-011-2618-7Suche in Google Scholar PubMed

Liu G.H., Shao R., Li J.Y., Zhou D.H., Li H., Zhu X.Q. 2013. The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny. BMC Genomics, 21, 414. 10.1186/1471-2164-14-414Suche in Google Scholar PubMed PubMed Central

Luna-Olivares L.A., Ferdushy T., Kyvsgaard N.C., Nejsum P., Thamsborg S.M., Roepstorff A. et al. 2012. Localization of Ascaridia galli larvae in the jejunum of chickens three days post infection. Veterinary Parasitology, 185, 186–193. 10.1007/s00436-012-3079-3Suche in Google Scholar PubMed

Magwisha H., Kassuku A., Nyvsgaard N., Permin A. 2002. A comparison of the prevalance and burdens of helminth infections in growers and adult free-range chickens. Tropical Animal Health Production, 34, 205–21410.1023/A:1015278524559Suche in Google Scholar

Martin-Pacho J.R., Montoya M.N., Arangna T., Toro C., Morchon C., Marcos-Atxutegi C. et al. 2005. A coprological and serological survery for the prevalence of Ascaridia spp. in Laying Hens. Journal of Veterinary Medicine Series B: Infectious Diseases and Veterinary Public Health, 52, 238–242. 10.1111/j.1439-0450.2005.00853.xSuche in Google Scholar PubMed

Permin, A., Bisgaard M., Frandsen F., Pearman M., Kold J., Nansen P. 1999. Prevalence of gastrointestinal helminths in different poultry production systems. British Poultry Science, 40, 439–443. 10.1080/00071669987179Suche in Google Scholar PubMed

Permin A., Christensen J.P, Bisgaard M. 2006. Consequences of concurrent Ascaridia galli and Escherichia coli infections in chickens. Acta Veterinaria Scandinavica, 47, 43–5410.1186/1751-0147-47-43Suche in Google Scholar PubMed PubMed Central

Ramadan H.H., Abouznada N.Y. 1992. Morphology and life history of Ascaridia galli in the Domestic Fowl that are raised in Jeddah. Journal of King Saud UniversityScience, 4, 87–9910.4197/Sci.4-1.9Suche in Google Scholar

Schnare M.N., Collings J.C., Spencer D.F, Gray. M.W. 2000. The 28S-18S rDNA intergenic spacer from Crithidia fasciculata: repeated sequences, length heterogeneity, putative processing sites and potential interactions between U3 small nucleolar RNA and the ribosomal RNA precursor. Nucleic Acids Research, 28, 3452–346110.1093/nar/28.18.3452Suche in Google Scholar PubMed PubMed Central

Szelągiewicz, M., Sokół R. 1991. Parasites of poultry in a small on suburb raisings. Medycyna Weterynaryjna, 47, 208–209Suche in Google Scholar

Veldman G.M., Klootwijk J., Van Heerikhuizen H., Planta R.J. 1981. The nucleotide sequence of the intergenic region between the 5.8S and 26S rRNA genes of the yeast ribosomal RNA operon. Possible implications for the interaction between 5.8S and 26S rRNA and the processing of the primary transcript. Nucleic Acids Research, 9, 4847–486210.1093/nar/9.19.4847Suche in Google Scholar PubMed PubMed Central

Zhao W.T., Guo Y.N., Zhang L.P., Li L. 2016. Ultrastructure of Ascaridia galli (Schrank, 1788) (Nematoda: Ascaridida) from the endangered green peafowl Pavo muticus Linnaeus (Galliformes: Phasianidae). Acta Parasitolologica, 61, 66–73. 10.1515/ap-2016-0007Suche in Google Scholar PubMed

Received: 2017-12-04
Revised: 2018-03-26
Accepted: 2018-04-04
Published Online: 2018-07-04
Published in Print: 2018-09-25

© 2018 W. Stefański Institute of Parasitology, PAS

Artikel in diesem Heft

  1. Human case of Fasciola gigantica-like infection, review of human fascioliasis reports in Nepal, and epidemiological analysis within the South Central Asia
  2. First molecular identification of an agent of diplostomiasis, Diplostomum pseudospathaceum (Niewiadomska 1984) in the United Kingdom and its genetic relationship with populations in Europe
  3. The discovery of Lepeophtheirus acutusHeegaard, 1943 (Copepoda: Caligidae) from two new elasmobranch hosts in the Mediterranean Sea, and a comparative redescription of Lepeophtheirus rhinobati Luque, Chaves et Cezar, 1998
  4. Endoparasites in Limnonectes magnus (Anura, Dicroglossidae) from Samar Island, Philippines with description of a new species of Aplectana (Nematoda, Cosmocercidae)
  5. Morphological and molecular study of Neorhadinorhynchus nudus (Harada, 1938) (Acanthocephala: Cavisomidae) from Auxis thazard Lacepede (Perciformes: Scombridae) in the South China Sea
  6. Alveolar echinococcosis in a dog; analysis of clinical and histological findings and molecular identification of Echinococcus multilocularis
  7. Morphological and phylogenetic characterization of a novel Unicauda species, infecting the kidney of Astyanax altiparanae (Teleostei: Characidae) in Brazil
  8. Systemic oxidative stress in Suffolk and Santa Ines sheep experimentally infected with Haemonchus contortus
  9. Molecular characterization of Theileria spp. in livestock and the first report on the occurrence of Theileria sp. OT3 in Iran
  10. Molecular phylogenetic position of Haplometroides intercaecalis (Digenea, Plagiorchiidae)
  11. Ten new species of BrueeliaKéler, 1936 (Phthiraptera: Ischnocera: Philopteridae) from nuthatches (Aves: Passeriformes: Sittidae), tits and chickadees (Paridae), and goldcrests (Regulidae)
  12. A new coccidian parasite (Apicomplexa: Eimeriidae: Eimeria) from the southern black racer, Coluber constrictor priapus (Reptilia: Ophidia: Colubridae) from Arkansas, USA
  13. Assessment of oxidative/nitrosative stress biomarkers and DNA damage in Haemonchus contortus, following exposure to zinc oxide nanoparticles
  14. Descriptions of Acanthocephalus parallelcementglandatus (Echinorhynchidae) and Neoechinorhynchus (N.) pennahia (Neoechinorhynchidae) (Acanthocephala) from amphibians and fish in Central and Pacific coast of Vietnam, with notes on N. (N.) longnucleatus
  15. Morphological and molecular characterization of Paramphistomum epiclitum of small ruminants
  16. Further study on Procamallanus (Spirocamallanus) pintoi (Kohn et Fernandes, 1988) (Nematoda: Camallanidae) in Corydoras paleatus and Corydoras micracanthus (Siluriformes: Callichthyidae) from Salta, Argentina, with a key to congeneric species from Neotropical Realm
  17. Screening of Cercopithifilaria bainae and Hepatozoon canis in ticks collected from dogs of Northeastern Brazil
  18. Epidemiological and genetic characterization of larval stages of Fasciola gigantica in snail intermediate hosts in Karnataka State, India
  19. Does apicortin, a characteristic protein of apicomplexan parasites and placozoa, occur in Eumetazoa?
  20. Comparison of sensitivity of two primer sets for the detection of Toxoplasma gondii DNA in wildlife
  21. Research Note
  22. Ascaridia galli isolates with ITS1-5.8rRNA-ITS2 fragment homologous to Ascaridia columbae
  23. Research Note
  24. Anti-Neospora caninum antibodies in feral cats on the Island of Fernando de Noronha, Brazil
  25. Research Note
  26. First molecular evidence of Thelohanellus wallagoiSarkar, 1985 (Myxozoa) from economically important food fish, freshwater shark Wallago attu (Siluridae) in India
  27. Research Note
  28. First identification of Echinococcus multilocularis in golden jackals in Croatia
  29. Case Report
  30. Dirofilaria repens infection as a cause of intensive peripheral microfilariemia in a Polish patient: process description and cases review
Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ap-2018-0073/html
Button zum nach oben scrollen