Abstract
Apicortin is a characteristic protein of apicomplexan parasites which has recently been identified in their free-living cousins, chromerids as well. The placozoan Trichoplax adhaerens is the only animal possessing this protein and apicortin is one of its most abundant proteins. The recently published transcriptome of the cnidarian Porites astreoides contains an apicortin-like sequence. Other cnidarians do not have it, thus it is its first occurrence not only in this phylum but also in Eumetazoa. However, its translated amino acid sequence is more similar to apicomplexan apicortins than to that of T. adhaerens, the GC ratio is much higher than either the genome-wide GC ratio of P. astreoides or that of the placozoan apicortin gene, and phylogenetic analyses suggest that this apicortin has an apicomplexan origin. Although these data might be indicative for a horizontal gene transfer event, we should be cautious to state it; it is more probable that it is a contamination from a gregarine, a marine Apicomplexa. Thus T. adhaerens remains the only animal where the presence of apicortin is proved.
Acknowledgments
The author thanks Dr. Judit Oláh for the careful reading of the manuscript.
References
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 253, 3389–340210.1093/nar/25.17.3389Search in Google Scholar PubMed PubMed Central
Aurrecoechea C., Barreto A., Basenko E.Y., Brestelli J., Brunk B.P., Cade S., et al. 2017. EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Research, 45, D581–D591. 10.1093/nar/gkw1105Search in Google Scholar PubMed PubMed Central
Barta J.R., Thompson R.C. 2006. What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends in Parasitology, 22, 463–468. 10.1016/j.pt.2006.08.001Search in Google Scholar PubMed
Borner J., Burmester T. 2017. Parasite infection of public databases, a data mining approach to identify apicomplexan contaminations in animal genome and transcriptome assemblies. BMC Genomics, 18, 100. 10.1186/s12864-017-3504-1Search in Google Scholar PubMed PubMed Central
Felsenstein J. 2008. PHYLIP Phylogeny Inference Package. version 3.696, Department of Genome Sciences and Department of Biology University of Washington Seattle WA http://evolution.genetics.washington.edu/phylip.htmlSearch in Google Scholar
Hlavanda E., Kovács J., Oláh J., Orosz F., Medzihradszky K.F., Ovádi J. 2002. Brain-specific p25 protein binds to tubulin and microtubules and induces aberrant microtubule assemblies at substoichiometric concentrations. Biochemistry, 41, 8657–866410.1021/bi020140gSearch in Google Scholar PubMed
Janouškovec J., Horák A., Oborník M., Lukeš J., Keeling P.J. 2010. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proceedings of the National Academy of Sciences of the United States of America, 107, 10949–10954. 10.1073/pnas.1003335107Search in Google Scholar PubMed PubMed Central
Jones D.T., Taylor W.R., Thornton J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences, 8, 275–282.10.1093/bioinformatics/8.3.275Search in Google Scholar PubMed
Kumar S., Jones M., Koutsovoulos G., Clarke M., Blaxter M. 2013. Blobology: exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots. Frontiers in Genetics, 4, 237. 10.3389/fgene.2013.00237Search in Google Scholar PubMed PubMed Central
Leander B.S. Marine gregarines: evolutionary prelude to the apicomplexan radiation? 2008. Trends in Parasitology, 24, 60–67. 10.1016/j.pt.2007.11.005Search in Google Scholar PubMed
Logan-Klumpler F.J., De Silva N., Boehme U., Rogers M.B., Velarde G., McQuillan J.A., et al. 2012. GeneDB – an annotation database for pathogens. Nucleic Acids Research. 40, D98–108. 10.1093/nar/gkr1032Search in Google Scholar PubMed PubMed Central
Lopes R.J., Mérida A.M., Carneiro M. 2017. Unleashing the potential of public genomic resources to find parasite genetic data. Trends in Parasitology, 33, 750–753. 10.1016/j.pt.2017.06.006Search in Google Scholar PubMed
Mansour T.A., Rosenthal J.J., Brown C.T., Roberson L.M. 2016. Transcriptome of the Caribbean stony coral Porites astreoides from three developmental stages. GigaScience, 5, 33. 10.1186/s13742-016-0138-1Search in Google Scholar PubMed PubMed Central
Merchant S., Wood D.E., Salzberg S.L. 2014. Unexpected crossspecies contamination in genome sequencing projects. Peer-Journal, 2, e675. 10.7717/peerj.675Search in Google Scholar PubMed PubMed Central
Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C., et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science, 346, 763–767. 10.1126/science.1257570Search in Google Scholar PubMed
Moore R.B., Oborník M., Janouskovec J., Chrudimský T., Vancová M., Green D.H., et al. 2008. A photosynthetic alveolate closely related to apicomplexan parasites. Nature, 451, 959–963. 10.1038/nature06635Search in Google Scholar PubMed
Nagayasu E., Hwang Y.C., Liu J., Murray J.M., Hu K. 2017. Loss of a doublecortin (DCX)-domain protein causes structural defects in a tubulin-based organelle of Toxoplasma gondii and impairs host-cell invasion. Molecular Biology of the Cell, 28, 411–428. 10.1091/mbc.E16-08-0587Search in Google Scholar PubMed PubMed Central
Oborník M., Modrý D., Lukeš M., Cernotíková-Stříbrná E., Cihlář J., Tesařová M., et al. 2012. Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist, 163, 306–323. 10.1016/j.protis.2011.09.001Search in Google Scholar PubMed
Oláh J., Szénási T., Szabó A., Kovács K., Lőw P., Štifanić M., et al. 2017. Tubulin binding and polymerization promoting properties of TPPP proteins are evolutionarily conserved. Biochemistry, 56, 1017–1024. 10.1021/acs.biochem.6b00902Search in Google Scholar PubMed
Orosz F. 2009. Apicortin, a unique protein, with a putative cytoskeletal role, shared only by apicomplexan parasites and the placozoan Trichoplax adhaerens. Infection, Genetics and Evolution, 9, 1275–1286. 10.1016/j.meegid.2009.09.001Search in Google Scholar PubMed
Orosz F. 2011. Apicomplexan apicortins possess a long disordered N-terminal extension. Infection, Genetics and Evolution, 11, 1037–1044. 10.1016/j.meegid.2011.03.023Search in Google Scholar PubMed
Orosz F. 2012. A new protein superfamily: TPPP-like proteins. PLoS One, 7, e49276. 10.1371/journal.pone.0049276Search in Google Scholar PubMed PubMed Central
Orosz F. 2015. Two recently sequenced vertebrate genomes are contaminated with apicomplexan species of the Sarcocystidae family. International Journal of Parasitology, 45, 871–878. 10.1016/j.ijpara.2015.07.002Search in Google Scholar PubMed
Orosz F. 2016. Wider than thought phylogenetic occurrence of apicortin, a characteristic protein of apicomplexan parasites. Journal of Molecular Evolution, 82, 303–314. 10.1007/s00239-016-9749-5Search in Google Scholar PubMed
Orosz F. 2017. On the benefit of publishing uncurated genome assembly data. Journal of Bacteriology and Parasitology, 2017, 8, 317. 10.4172/2155-9597.1000317Search in Google Scholar
Ringrose J.H., van den Toorn H.W., Eitel M., Post H., Neerincx P., Schierwater B., et al. 2013. Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity. Nature Communications, 4, 1408. 10.1038/ncomms2424Search in Google Scholar PubMed
Ronquist F., Huelsenbeck J.P.. 2003. MrBayes 3, Bayesian phylogenetic inference under mixture models. Bioinformatics, 19, 1572–157410.1093/bioinformatics/btg180Search in Google Scholar PubMed
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., et al. 2011. Fast scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539. 10.1038/msb.2011.75Search in Google Scholar PubMed PubMed Central
Shinzato C., Inoue M., Kusakabe M. 2014. A snapshot of a coral “holobiont”: a transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae. PLoS One, 9, e85182. 10.1371/journal.pone.0085182Search in Google Scholar PubMed PubMed Central
Shoguchi E., Shinzato C., Kawashima T., Gyoja F., Mungpakdee S., Koyanagi R., et al. 2013. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Current Biology, 23, 1399–1408. 10.1016/j.cub.2013.05.062Search in Google Scholar PubMed
Tavare S.. 1986. Some probabilistic and statistical problems on the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86Search in Google Scholar
Templeton T.J., Enomoto S., Chen W.J., Huang C.G., Lancto C.A., Abrahamsen M.S., et al. 2010. A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a Gregarine and Cryptosporidium. Molecular Biology and Evolution, 27, 235–248. 10.1093/molbev/msp226Search in Google Scholar PubMed PubMed Central
Vincze O., Tőkési N., Oláh J., Hlavanda E., Zotter A., Horváth I., et al. 2006. Tubulin polymerization promoting proteins (TPPPs): members of a new family with distinct structures and functions. Biochemistry, 45, 13818–13826. 10.1021/bi061305eSearch in Google Scholar PubMed
Whelan S., Goldman N. 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular Biology and Evolution, 18, 691-69910.1093/oxfordjournals.molbev.a003851Search in Google Scholar PubMed
Supporting Information
SI 1. Tentative amino acid sequences of Porites astreoides and Aleochara curtula TPPPs. Numbers indicate the order of nucleotides in the GEHP01438502 and GATW02010314 TSA sequences of P. astreoides and Aleochara curtula, respectively. Gray background indicates the possible initiation codons and the stop codons


Amino acid sequences

Nucleotide sequences










© 2018 W. Stefański Institute of Parasitology, PAS
Articles in the same Issue
- Human case of Fasciola gigantica-like infection, review of human fascioliasis reports in Nepal, and epidemiological analysis within the South Central Asia
- First molecular identification of an agent of diplostomiasis, Diplostomum pseudospathaceum (Niewiadomska 1984) in the United Kingdom and its genetic relationship with populations in Europe
- The discovery of Lepeophtheirus acutusHeegaard, 1943 (Copepoda: Caligidae) from two new elasmobranch hosts in the Mediterranean Sea, and a comparative redescription of Lepeophtheirus rhinobati Luque, Chaves et Cezar, 1998
- Endoparasites in Limnonectes magnus (Anura, Dicroglossidae) from Samar Island, Philippines with description of a new species of Aplectana (Nematoda, Cosmocercidae)
- Morphological and molecular study of Neorhadinorhynchus nudus (Harada, 1938) (Acanthocephala: Cavisomidae) from Auxis thazard Lacepede (Perciformes: Scombridae) in the South China Sea
- Alveolar echinococcosis in a dog; analysis of clinical and histological findings and molecular identification of Echinococcus multilocularis
- Morphological and phylogenetic characterization of a novel Unicauda species, infecting the kidney of Astyanax altiparanae (Teleostei: Characidae) in Brazil
- Systemic oxidative stress in Suffolk and Santa Ines sheep experimentally infected with Haemonchus contortus
- Molecular characterization of Theileria spp. in livestock and the first report on the occurrence of Theileria sp. OT3 in Iran
- Molecular phylogenetic position of Haplometroides intercaecalis (Digenea, Plagiorchiidae)
- Ten new species of BrueeliaKéler, 1936 (Phthiraptera: Ischnocera: Philopteridae) from nuthatches (Aves: Passeriformes: Sittidae), tits and chickadees (Paridae), and goldcrests (Regulidae)
- A new coccidian parasite (Apicomplexa: Eimeriidae: Eimeria) from the southern black racer, Coluber constrictor priapus (Reptilia: Ophidia: Colubridae) from Arkansas, USA
- Assessment of oxidative/nitrosative stress biomarkers and DNA damage in Haemonchus contortus, following exposure to zinc oxide nanoparticles
- Descriptions of Acanthocephalus parallelcementglandatus (Echinorhynchidae) and Neoechinorhynchus (N.) pennahia (Neoechinorhynchidae) (Acanthocephala) from amphibians and fish in Central and Pacific coast of Vietnam, with notes on N. (N.) longnucleatus
- Morphological and molecular characterization of Paramphistomum epiclitum of small ruminants
- Further study on Procamallanus (Spirocamallanus) pintoi (Kohn et Fernandes, 1988) (Nematoda: Camallanidae) in Corydoras paleatus and Corydoras micracanthus (Siluriformes: Callichthyidae) from Salta, Argentina, with a key to congeneric species from Neotropical Realm
- Screening of Cercopithifilaria bainae and Hepatozoon canis in ticks collected from dogs of Northeastern Brazil
- Epidemiological and genetic characterization of larval stages of Fasciola gigantica in snail intermediate hosts in Karnataka State, India
- Does apicortin, a characteristic protein of apicomplexan parasites and placozoa, occur in Eumetazoa?
- Comparison of sensitivity of two primer sets for the detection of Toxoplasma gondii DNA in wildlife
- Research Note
- Ascaridia galli isolates with ITS1-5.8rRNA-ITS2 fragment homologous to Ascaridia columbae
- Research Note
- Anti-Neospora caninum antibodies in feral cats on the Island of Fernando de Noronha, Brazil
- Research Note
- First molecular evidence of Thelohanellus wallagoiSarkar, 1985 (Myxozoa) from economically important food fish, freshwater shark Wallago attu (Siluridae) in India
- Research Note
- First identification of Echinococcus multilocularis in golden jackals in Croatia
- Case Report
- Dirofilaria repens infection as a cause of intensive peripheral microfilariemia in a Polish patient: process description and cases review
Articles in the same Issue
- Human case of Fasciola gigantica-like infection, review of human fascioliasis reports in Nepal, and epidemiological analysis within the South Central Asia
- First molecular identification of an agent of diplostomiasis, Diplostomum pseudospathaceum (Niewiadomska 1984) in the United Kingdom and its genetic relationship with populations in Europe
- The discovery of Lepeophtheirus acutusHeegaard, 1943 (Copepoda: Caligidae) from two new elasmobranch hosts in the Mediterranean Sea, and a comparative redescription of Lepeophtheirus rhinobati Luque, Chaves et Cezar, 1998
- Endoparasites in Limnonectes magnus (Anura, Dicroglossidae) from Samar Island, Philippines with description of a new species of Aplectana (Nematoda, Cosmocercidae)
- Morphological and molecular study of Neorhadinorhynchus nudus (Harada, 1938) (Acanthocephala: Cavisomidae) from Auxis thazard Lacepede (Perciformes: Scombridae) in the South China Sea
- Alveolar echinococcosis in a dog; analysis of clinical and histological findings and molecular identification of Echinococcus multilocularis
- Morphological and phylogenetic characterization of a novel Unicauda species, infecting the kidney of Astyanax altiparanae (Teleostei: Characidae) in Brazil
- Systemic oxidative stress in Suffolk and Santa Ines sheep experimentally infected with Haemonchus contortus
- Molecular characterization of Theileria spp. in livestock and the first report on the occurrence of Theileria sp. OT3 in Iran
- Molecular phylogenetic position of Haplometroides intercaecalis (Digenea, Plagiorchiidae)
- Ten new species of BrueeliaKéler, 1936 (Phthiraptera: Ischnocera: Philopteridae) from nuthatches (Aves: Passeriformes: Sittidae), tits and chickadees (Paridae), and goldcrests (Regulidae)
- A new coccidian parasite (Apicomplexa: Eimeriidae: Eimeria) from the southern black racer, Coluber constrictor priapus (Reptilia: Ophidia: Colubridae) from Arkansas, USA
- Assessment of oxidative/nitrosative stress biomarkers and DNA damage in Haemonchus contortus, following exposure to zinc oxide nanoparticles
- Descriptions of Acanthocephalus parallelcementglandatus (Echinorhynchidae) and Neoechinorhynchus (N.) pennahia (Neoechinorhynchidae) (Acanthocephala) from amphibians and fish in Central and Pacific coast of Vietnam, with notes on N. (N.) longnucleatus
- Morphological and molecular characterization of Paramphistomum epiclitum of small ruminants
- Further study on Procamallanus (Spirocamallanus) pintoi (Kohn et Fernandes, 1988) (Nematoda: Camallanidae) in Corydoras paleatus and Corydoras micracanthus (Siluriformes: Callichthyidae) from Salta, Argentina, with a key to congeneric species from Neotropical Realm
- Screening of Cercopithifilaria bainae and Hepatozoon canis in ticks collected from dogs of Northeastern Brazil
- Epidemiological and genetic characterization of larval stages of Fasciola gigantica in snail intermediate hosts in Karnataka State, India
- Does apicortin, a characteristic protein of apicomplexan parasites and placozoa, occur in Eumetazoa?
- Comparison of sensitivity of two primer sets for the detection of Toxoplasma gondii DNA in wildlife
- Research Note
- Ascaridia galli isolates with ITS1-5.8rRNA-ITS2 fragment homologous to Ascaridia columbae
- Research Note
- Anti-Neospora caninum antibodies in feral cats on the Island of Fernando de Noronha, Brazil
- Research Note
- First molecular evidence of Thelohanellus wallagoiSarkar, 1985 (Myxozoa) from economically important food fish, freshwater shark Wallago attu (Siluridae) in India
- Research Note
- First identification of Echinococcus multilocularis in golden jackals in Croatia
- Case Report
- Dirofilaria repens infection as a cause of intensive peripheral microfilariemia in a Polish patient: process description and cases review