Home In search of a potential diagnostic tool for molecular characterization of lymphatic filariasis
Article
Licensed
Unlicensed Requires Authentication

In search of a potential diagnostic tool for molecular characterization of lymphatic filariasis

  • Mohd Saeed , Mohd Adnan EMAIL logo , Saif Khan , Eyad Al-Shammari and Huma Mustafa
Published/Copyright: December 30, 2015
Become an author with De Gruyter Brill

Abstract

Lymphatic filariasis (LF) is a chronic disease and is caused by the parasites Wuchereria bancrofti (W. bancrofti), Brugia malayi (B. malayi) and Brugia timori (B. timori). In the present study, Setaria cervi (S. cervi), a bovine filarial parasite has been used. Previously, it has been reported that the S. cervi shares some common proteins and antigenic determinants with that of human filarial parasite. The larval stages of filarial species usually cannot be identified by classical morphology. Hence, molecular characterization allows the identification of the parasites throughout all their developmental stages. The genomic DNA of S. cervi adult were isolated and estimated spectrophotometrically for the quantitative presence of DNA content. Screening of DNA sequences from filarial DNA GenBank and Expressed Sequence Tags (EST’s) were performed for homologous sequences and then multiple sequence alignment was executed. The conserved sequences from multiple sequence alignment were used for In Silico primer designing. The successfully designed primers were used further in PCR amplifications. Therefore, in search of a promising diagnostic tool few genes were identified to be conserved in the human and bovine filariasis and these novel primers deigned may help to develop a promising diagnostic tool for identification of lymphatic filariasis.

References

Alasaad S., Pascucci I., Jowers M.J., Soriguer R.C., Zhu X.Q., Rossi L. 2012. Phylogenetic study of Setaria cervi based on mitochondrial cox1 gene sequences. Parasitology Research, 110, 281-28510.1007/s00436-011-2486-1Search in Google Scholar

Bockarie M.J., Molyneux D.H. 2009. The end of lymphatic filariasis? British Medical Journal (BMJ), 338, 168610.1136/bmj.b1686Search in Google Scholar

Braga C., Dourado M.I., Ximenes R.A.D.A., Alves L., Brayner F., Rocha A., Alexander N. 2003. Field evaluation of the whole blood immunochromatographic test for rapid bancroftian filariasis diagnosis in the northeast of Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 45, 125-12910.1590/S0036-46652003000300002Search in Google Scholar

Cancrini G., Kramer L.H. 2001. Insect vectors of Dirofilaria spp. In: Simon F., Genchi C. (eds) Heartworm infection in humans and animals. Universidad de Salamanca, Spain, 63-82Search in Google Scholar

Chu B.K., Hooper P.J., Bradley M.H., McFarland D.A., and Ottesen E.A. 2010.The economic benefits resulting from the first 8 years of the Global Programme to Eliminate Lymphatic Filariasis (2000-2007). PLoS Neglected Tropical Diseases, 4, 70810.1371/journal.pntd.0000708Search in Google Scholar

Cooper R.D. 1998 Preservation of anopheline mosquitoes for DNA probe analysis. Joumal of the American Mosquito Control Association, 14, 58-60Search in Google Scholar

Dissanayake S., Piessens W.F. 1991. Detection of amplified Wuchereria bancrofti DNA in mosquitoes with a non-radioactive probe. Molecular and Biochemical Parasitology, 45, 49-5610.1016/0166-6851(91)90026-3Search in Google Scholar

Dixit V, Pati AK, Gupta AK, Bisen PS, Prasad GB. 2009. Filarial infection is resisted differentially by subjects having different blood group phenotypes. Journal of Clinical Laboratory Analysis, 23, 86-91. DOI: 10.1002/jcla.2031710.1002/jcla.20317Search in Google Scholar

Farid H.A., Hammad R.E., Hassan M.M., Morsy Z.S., Kamal I.H., Weil G.J., Ramzy R.M.R. 2001. Detection of Wuchereria bancrofti in mosquitoes by the polymerase chain reaction: a potentially useful tool for large scale control programmes. Transactions of the Royal Society of Tropical Medicine and Hygine, 95, 29-3210.1016/S0035-9203(01)90322-0Search in Google Scholar

Favia G., Lanfrancotti A., Della Torre A., Cancrini G., Coluzzi M. 1997. Advances in the identification of Dirofilaria repens and Dirofilaria immitis by a PCR-based approach. Parassitologia, 39, 401-402Search in Google Scholar

Ghedin E., Wang S., Spiro D., Caler E., Zhao Q., Crabtree J., Allen J.E., Delcher A.L., Guiliano D.B., Miranda-Saavedra D., Angiuoli S.V., Creasy T., Amedeo P., Haas B., El-Sayed N.M., Wortman J.R., Feldblyum T., Tallon L., Schatz M., Shumway M., Koo H., Salzberg S.L., Schobel S., Pertea M., Pop M., White O., Barton G.J., Carlow C.K., Crawford M.J., Daub J., Dimmic M.W., Estes C.F., Foster J.M., Ganatra M., Gregory W.F., Johnson N.M., Jin J., Komuniecki R., Korf I., Kumar S., Laney S., Li B.W., Li W., Lindblom T.H., Lustigman S., Ma D., Maina C.V., Martin D.M., McCarter J.P., McReynolds L., Mitreva M., Nutman T.B., Parkinson J., Peregrín-Alvarez J.M., Poole C., Ren Q., Saunders L., Sluder A.E., Smith K., Stanke M., Unnasch T.R., Ware J., Wei A.D., Weil G., Williams D.J., Zhang Y., Williams S.A., Fraser-Liggett C., Slatko B., Blaxter M.L., and Scott A.L. 2007. Draft genome of the filarial nematode parasite Brugia malayi. Science, 317, 1756-176010.1126/science.1145406Search in Google Scholar

Hamlin K.L., Moss D.M., Priest J.W., Roberts J., Kubofcik J., Gass K., Lammie P. J. 2012. Longitudinal monitoring of the development of antifilarial antibodies and acquisition of Wuchereria bancrofti in a highly endemic area of Haiti. PLoS Neglected Tropical Diseases, 6, e194110.1371/journal.pntd.0001941Search in Google Scholar

Hedge E.C., Ridley D.S. 1977. Immunofluorescent reactions with microfilariae: 1. Diagnostic evaluation. Transactions of the Royal Society of Tropical Medicine and Hygine 71, 30410.1016/0035-9203(77)90105-5Search in Google Scholar

Kaushal N.A., Hussain R., Nash E., Ottesen E.A. 1982. Identification and characterization of excretory-secretory products of Brugia malayi, adult filarial parasites. The Journal of Immunology, 129, 338-34310.4049/jimmunol.129.1.338Search in Google Scholar

Kolaczinski J. H., Onapa A. W., Kabatereine N. B., Ndyomugyenyi R., Kakembo A. S., Brooker S. 2006. Neglected tropical diseases and their control in uganda. Analysis, chapter 4, pp. 27-31Search in Google Scholar

Koroma J. B., Bangura M. M., Hodges M. H., Bah M. S., Zhang Y., Bockarie M. J. 2012. Lymphatic filariasis mapping by Immunochromatographic Test cards and baseline microfilaria survey prior to mass drug administration in Sierra Leone. Parasites & Vectors, 5, 10 DOI: 10.1186/1756-3305-5-1010.1186/1756-3305-5-10Search in Google Scholar PubMed PubMed Central

Krushna N., Shiny C. 2009 Immunolocalization and serum antibody responses to Brugia malayi pepsin inhibitor homolog (B-33). Microbiology and Immunology, 53, 173-18310.1111/j.1348-0421.2009.00114.xSearch in Google Scholar PubMed

Kubofcik J., Fink D.L., Nutman T.B. 2012. Identification of Wb123 as an Early and Specific Marker of Wuchereria bancrofti Infection. PLoS Neglected Tropical Diseases, 6, e1930. DOI:10.1371/journal.pntd.000193010.1371/journal.pntd.0001930Search in Google Scholar PubMed PubMed Central

Lizotte M.R., Supali T., Partono F. and Williams S.A. 1994. A polymerase chain reaction assay for the detection of Brugia malayi in blood. American Journal Tropical Medicine and Hygiene, 51, 314-2110.4269/ajtmh.1994.51.314Search in Google Scholar PubMed

Madathiparambil M.G., Kaleysa K.N., Raghavan K. 2009. A diagnostically useful 200-kDa protein is secreted through the surface pores of the filarial parasite Setaria digitata. Parasitology Research, 105, 1099-110410.1007/s00436-009-1525-7Search in Google Scholar PubMed

McCarthy J.S., Lustigman S., Yang G.J., Barakat R.M., Garcia H.H., Sripa B., Willingham A.L., Prichard R.K., Basáñez M.G. 2012.A research agenda for helminth diseases of humans: diagnostics for control and elimination programmes. PLoS Neglected Tropical Diseases, 6, 1601. DOI: 10.1371/journal. pntd.0001601Search in Google Scholar

McCarthy J.S., Zhong M., Gopinath R. (1996). Evaluation of a polymerase chain reaction-based assay for diagnosis ofWuchereria bancrofti infection. Journal of Infectious Disease, 173, 1510-410.1093/infdis/173.6.1510Search in Google Scholar PubMed

McReynolds L.A., DeSimone S.M., Williams S.A. 1986. Cloning and comparison of repeated DNA sequences from the human filarial parasite Brugia malayi and the animal parasite Brugia pahangi. Proceedings of the National Academic of Science, USA 83, 797-80110.1073/pnas.83.3.797Search in Google Scholar PubMed PubMed Central

Melrose W. 2004. Lymphatic filariasis: A review 1862-2002 (pp. 1-80). Warwick Educational Publishing Search in Google Scholar

Molyneux D.H., Taylor M.J. 2001 Current status and future prospects of the Global Lymphatic Filariasis Programme. Current Opinion in Infectious Diseases, 14, 155-15910.1097/00001432-200104000-00008Search in Google Scholar PubMed

Mustafa H., Srivastava N., Kaushal D.C., Kaushal, N. A. 1996. Analysis and potential of excretory-secretory antigens of Setaria cervi for immunodiagnosis of human filariasis. Indian Journal of Experimental Biology, 34, 508-512 Search in Google Scholar

Nanduri J., Kazura J.W. (1989). Clinical and laboratory aspects of filariasis. Clinical Microbiology Reviews, 2, 39-5010.1128/CMR.2.1.39Search in Google Scholar PubMed PubMed Central

Paily K.P., Hoti S.L., Das P.K. 2009. A review of the complexity of biology of lymphatic filarial parasites. Journal of Parasitic Diseases, 33, 3-1210.1007/s12639-009-0005-4Search in Google Scholar PubMed PubMed Central

Pandiaraja P., Arunkumar C., Hoti S. 2010. Evaluation of synthetic peptides of WbSXP-1 for the diagnosis of human lymphatic filariasis. Diagnostic Microbiology and Infectious Disease, 68, 410-41510.1016/j.diagmicrobio.2010.07.015Search in Google Scholar

Poole C.B., William, S.A. 1990. A rapid DNA assay for the speciesspecific detection and quantification of Brugia in blood sample. Molecular and Biochemical Parasitiology, 40, 129-3610.1016/0166-6851(90)90086-2Search in Google Scholar

Praphathip E., Phaik-Eem L., Hoi S.Y. 2013. The raffles bulletin of zoology 2013 Supplement No.29: 99-109 http://zoobank.org/urn:lsid:zoobank.org:pub:2EB147CA-0087-41D3-9312-FEDEF790E247Search in Google Scholar

Rahman A.R., Hwen-Yee C., Noordin R. 2007. Pan LF-ELISA using BmR1 and BmSXP recombinant antigens for detection of lymphatic filariasis. Filaria Journal, 6, 10. DOI:10.1186/ 1475-2883-6-1010.1186/1475-2883-6-10Search in Google Scholar

Siridewa K., Karunanayake E.H., Chandrasekharan N.V., Abeyewickreme W., Franzen L., Aslund L., Pettersson U. 1994. Cloning and characterization of a repetitive DNA sequence specific for Wuchereria bancrofti. The American Journal of Tropical Medicine and Hygiene, 51, 495-50010.4269/ajtmh.1994.51.495Search in Google Scholar

Srinivasan L., Mathew N., Muthuswamy K. 2009. In vitro antifilarial activity of glutathione S-transferase inhibitors. Parasitology Research, 105, 1179-118210.1007/s00436-009-1534-6Search in Google Scholar

Steel C., Kubofcik J., Ottesen E.A., Nutman T.B. 2012. Antibody to the Filarial Antigen Wb123 Reflects Reduced Transmission and Decreased Exposure in Children Born following Single Mass Drug Administration (MDA). PLoS Neglected Tropical Diseases, 6, e1940. DOI:10.1371/journal.pntd.000194010.1371/journal.pntd.0001940Search in Google Scholar

Thompson J.D., Gibson T.J., Higgins D.G. Multiple sequence alignment using ClustalW and Clustal X. Current Protocols in Bioinformatics. 2002; Chapter 2 (Unit 2 3).(chapter 4) 10.1002/0471250953.bi0203s00Search in Google Scholar

Walther M., Muller R. 2003. Diagnosis of human filariases (except onchocerciasis). Advances in parasitology, 53, 149-19310.1016/S0065-308X(03)53004-4Search in Google Scholar

Weil G., Curtis K., Fischer P., Won K. 2011.A multicenter evaluation of a new antibody test kit for lymphatic filariasis employing recombinant Brugia malayi antigen Bm-14. Acta Tropica, 120, 1-9. DOI:10.1016/j.actatropica.2010.04.010.A Search in Google Scholar

WHO. 2014 Lymphatic filariasis Fact sheet Updated March 2014. (http://www.who.int/mediacentre/factsheets/fs102/en) Search in Google Scholar

WHO. 2005. Sixth meeting of the Technical Advisory Group on the Global Elimination of Lymphatic Filariasis, Geneva, Switzerland, 20-23 September 2005. The Weekly Epidemiological Record, 80, 401-408Search in Google Scholar

Williams S.A., DeSimone S.M., McReynolds L.A. 1988. Speciesspecific oligonucleotide probes for the identification of human filarial parasites. Molecular and Biochemical Parasitology, 28, 163-16910.1016/0166-6851(88)90064-3Search in Google Scholar

Zhong, M., McCarthy, J.S., Bierwert, L., Lizotte-Waniewski M., Chanteau, S., Nutman T.B., Ottesen E. and Williams S.A. (1996). A polymerase chain reaction assay for detection of the parasite Wuchereria bancrofti in human blood samples. The American Journal of Tropical Medicine and Hygiene, 54, 357-63 10.4269/ajtmh.1996.54.357Search in Google Scholar PubMed

Received: 2014-4-13
Revised: 2015-7-9
Accepted: 2015-9-24
Published Online: 2015-12-30
Published in Print: 2016-1-1

© 2016

Articles in the same Issue

  1. Toxocarosis of the organ of sight – the complex pathological and diagnostic problem
  2. Trichomonas vaginalis: An Updated Overview Towards Diagnostic Improvement
  3. New species and records of mites of the superfamily Sarcoptoidea (Acariformes: Psoroptidia) from mammals in Brazil
  4. The morphology of free-living stages and immature parasites of Rhabdias paraensis (Nematoda: Rhabdiasidae), a parasite of Rhinella marina (Anura: Bufonidae) in Brazil
  5. Effects of altered water quality and trace elements on the infection variables of Paradiplozoon ichthyoxanthon (Monogenea: Diplozoidae) from two sites in the Vaal River system, South Africa
  6. Herd-level seroprevalence of Neospora caninum infection in dairy cattle in central and northeastern Poland
  7. Ultrastructure of Ascaridia galli (Schrank, 1788) (Nematoda: Ascaridida) from the endangered green peafowl Pavo muticus Linnaeus (Galliformes: Phasianidae)
  8. Prevalence and risk factors associated to Eimeria spp. infection in unweaned alpacas (Vicugna pacos) from Southern Peru
  9. Description of a new species of Chabaudus Inglis and Ogden, 1965 (Nematoda: Seuratoidea) from the frog Euphlyctis cyanophlyctis from Dehrandun, Uttarakhand, India
  10. Fertilization in the cestode Echinococcus multilocularis (Cyclophyllidea, Taeniidae)
  11. Expression analysis of viscerotropic leishmaniasis gene in Leishmania species by real-time RT-PCR
  12. Fourier transform infrared spectroscopy as a tool for identification of crude microbial extracts with anti-malarial potential
  13. A 43 kDa recombinant plasmepsin elicits immune response in mice against Plasmodium berghei malaria
  14. Effects of Echinostoma caproni miracidia dose on the amino acid contents of Biomphalaria glabrata as determined by high-performance thin-layer chromatography
  15. In search of a potential diagnostic tool for molecular characterization of lymphatic filariasis
  16. Seasonal pattern in parasite infracommunities of Hoplerythrinus unitaeniatus and Hoplias malabaricus (Actinopterygii: Erythrinidae) from the Brazilian Amazon
  17. The first detection of the tick-borne encephalitis virus (TBEV) RNA in Dermacentor reticulatus ticks collected from the lowland European bison (Bison bonasus bonasus L.)
  18. Assessing the influence of geographic distance in parasite communities of an exotic lizard
  19. Diagnostic value of semi-purified antigens of hydatid cyst fluid in human cystic echinococcosis
  20. Occurrence and morphogenetic characteristics of Gyrodactylus (Monogenea: Gyrodactylidae) from a rainbow trout farm (Lake Ladoga, Russia)
  21. Dactylogyrids (Monogenea) parasitic on cichlids from northern Brazil, with description of two new species of Sciadicleithrum and new host and geographical records
  22. Molecular detection and prevalence of feline hemotropic mycoplasmas in Istanbul, Turkey
  23. First report of Cystoisospora belli parasitemia in a patient with acquired immunodeficiency syndrome
  24. Cystic echinococcosis in Southern Israel
  25. Larval cestodes infecting the deep-water fish, Cataetyx laticeps (Pisces: Bythitidae) from Madeira Archipelago, Atlantic Ocean
  26. Toxocara canis glycans influence antigen recognition by mouse IgG1 and IgM antibodies
  27. Phylogenetic relationships among Linguatula serrata isolates from Iran based on 18S rRNA and mitochondrial cox1 gene sequences
  28. The transstadial persistence of tick-borne encephalitis virus in Dermacentor reticulatus ticks in natural conditions
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ap-2016-0015/html
Scroll to top button