Analytical optimization of the laser induced refractive index change (LIRIC) process: maximizing LIRIC without reaching the damage threshold
-
Samuel Arba-Mosquera
, Luise Krüger
Abstract
A method to determine the optimum laser parameters for maximizing laser induced refractive index change (LIRIC) while avoiding exceeding the damage threshold for different materials with high water content (in particular, polymers such as hydrogels or the human cornea) is proposed. The model is based upon two previous independent models for LIRIC and for laser induced optical breakdown (LIOB) threshold combined in a simple manner. This work provides qualitative and quantitative estimates for the parameters leading to a maximum LIRIC effect below the threshold of LIOB.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: SAM, LK, PN and SV are employees of SCHWIND eye-tech-solutions. SS is an employee of Light Conversion. WHK is Chief Science Officer at Clerio Vision, with no management or fiduciary responsibilities. LZ is an employee of Clerio Vision, Inc.
References
[1] S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol., vol. 96, pp. 710–715, 1983, https://doi.org/10.1016/s0002-9394(14)71911-7.Suche in Google Scholar
[2] A. Antón, M. T. Andrada, A. Mayo, J. Portela, and J. Merayo, “Epidemiology of refractive errors in an adult european population: the Segovia study,” J. Ophthalmic. Epidemiol., vol. 16, pp. 231–237, 2009, https://doi.org/10.1080/09286580903000476.Suche in Google Scholar
[3] S. Gomez, J. Herreras, J. M. Merayo-Lloves, M. García, P. Argueso, and J. Cuevas, “Effect of hyaluronic acid on corneal haze in a photorefractive keratectomy experimental model,” J. Refract. Surg., vol. 17, pp. 549–554, 2001, https://doi.org/10.3928/1081-597x-20010901-08.Suche in Google Scholar PubMed
[4] R. M. Torres, J. M. Merayo-Lloves, J. T. Blanco-Mezquita, et al.., “Experimental model of laser assisted in situ keratomileusis in hens,” J. Refract. Surg., vol. 21, pp. 392–398, 2005, https://doi.org/10.3928/1081-597x-20050701-15.Suche in Google Scholar PubMed
[5] S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, S. Susana Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Investig. Ophthalmol. Vis. Sci., vol. 51, no. 8, pp. 3961–3968, 2010, https://doi.org/10.1167/iovs.09-4536.Suche in Google Scholar PubMed
[6] J. L. Alió, M. Helmy Shabayek, R. Montes-Mico, et al.., “Intracorneal hydrogel lenses and corneal aberrations,” J. Refract. Surg., vol. 21, pp. 247–252, 2005, https://doi.org/10.3928/1081-597x-20050501-07.Suche in Google Scholar PubMed
[7] C. Martínez García, J. M. Merayo-Lloves, T. Blanco Mezquita, and S. Mar Sardaña, “Wound healing following refractive surgery in hens,” Exp. Eye Res., vol. 83, no. 4, pp. 728–735, 2006, https://doi.org/10.1016/j.exer.2006.02.017.Suche in Google Scholar PubMed
[8] J. Del Val, S. Barrero, B. Yañez, et al.., “Experimental measurement of corneal haze after excimer laser keratectomy,” Appl. Opt., vol. 40, pp. 1727–1731, 2001, https://doi.org/10.1364/ao.40.001727.Suche in Google Scholar PubMed
[9] J. M. Merayo-Lloves, B. P. Yañez, A. Mayo, R. Martín, and J. C. Pastor, “Experimental model of corneal haze in chickens,” J. Refract. Surg., vol. 17, pp. 696–699, 2001, https://doi.org/10.3928/1081-597x-20011101-11.Suche in Google Scholar PubMed
[10] Gould, G. Laser. US patent: US19590804539 19590406; 1959.Suche in Google Scholar
[11] A. L. Schawlow, and C. H. Townes, “Infrared and optical masers,” Phys. Rev., vol. 112, pp. 1940–1949, 1958, https://doi.org/10.1103/physrev.112.1940.Suche in Google Scholar
[12] C. A. Swinger, “Refractive surgery for the correction of myopia,” Trans. Ophthalmol. Soc. U. K., vol. 101, pp. 434–439, 1981.Suche in Google Scholar
[13] C. R. Munnerlyn, S. J. Koons, and J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg., vol. 14, pp. 46–52, 1988, https://doi.org/10.1016/s0886-3350(88)80063-4.Suche in Google Scholar
[14] R. R. Krueger, and S. L. Trokel, “Quantitation of corneal ablation by ultraviolet laser light,” Arch. Ophthalmol., vol. 103, pp. 1741–1742, 1985, https://doi.org/10.1001/archopht.1985.01050110137042.Suche in Google Scholar PubMed
[15] G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, “Excimer laser corneal ablation: absence of a significant “incubation” effect,” Laser Surg. Med., vol. 11, pp. 411–418, 1991, https://doi.org/10.1002/lsm.1900110505.Suche in Google Scholar PubMed
[16] T. Seiler, U. Genth, A. Holschbach, and M. Derse, “Aspheric photorefractive keratectomy with excimer laser,” Refract. Corneal Surg., vol. 9, pp. 166–172, 1993, https://doi.org/10.3928/1081-597x-19930501-04.Suche in Google Scholar
[17] L. Mastropasqua, L. Toto, E. Zuppardi, et al.., “Photorefractive keratectomy with aspheric profile of ablation versus conventional photorefractive keratectomy for myopia correction: six-month controlled clinical trial,” J. Cataract Refract. Surg., vol. 32, pp. 109–116, 2006, https://doi.org/10.1016/j.jcrs.2005.11.026.Suche in Google Scholar PubMed
[18] C. Kirwan, and M. O’Keefe, “Comparative study of higher-order aberrations after conventional laser in situ keratomileusis and laser epithelial keratomileusis for myopia using the technolas 217z laser platform,” Am. J. Ophthalmol., vol. 147, pp. 77–83, 2009, https://doi.org/10.1016/j.ajo.2008.07.014.Suche in Google Scholar PubMed
[19] R. R. Krueger, T. Juhasz, A. Gualano, and V. Marchi, “The picosecond laser for nonmechanical laser in situ keratomileusis,” J. Refract. Surg., vol. 14, no. 4, pp. 467–469, 1998, https://doi.org/10.3928/1081-597x-19980701-15.Suche in Google Scholar PubMed
[20] D. S. Durrie, S. G. Slade, and J. Marshall, “Wavefront-guided excimer laser ablation using photorefractive keratectomy and sub-Bowman’s keratomileusis: a contralateral eye study,” J. Refract. Surg., vol. 24, no. 1, pp. S77–S84, 2008, https://doi.org/10.3928/1081597X-20080101-14.Suche in Google Scholar PubMed
[21] W. Sekundo, K. Kunert, C. Russmann, et al.., “First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results,” J. Cataract Refract. Surg., vol. 34, no. 9, pp. 1513–1520, 2008, https://doi.org/10.1016/j.jcrs.2008.05.033.Suche in Google Scholar PubMed
[22] W. Sekundo, K. S. Kunert, and M. Blum, “Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study,” Br. J. Ophthalmol., vol. 95, no. 3, pp. 335–339, 2011, https://doi.org/10.1136/bjo.2009.174284.Suche in Google Scholar PubMed
[23] I. Ratkay-Traub, I. E. Ferincz, T. Juhasz, R. M. Kurtz, and R. R. Krueger, “First clinical results with the femtosecond neodymium-glass laser in refractive surgery,” J. Refract. Surg., vol. 19, no. 2, pp. 94–103, 2003, https://doi.org/10.3928/1081-597x-20030301-03.Suche in Google Scholar PubMed
[24] A. Heisterkamp, T. Mamom, O. Kermani, et al.., “Intrastromal refractive surgery with ultrashort laser pulses: in vivo study on the rabbit eye,” Graefes Arch. Clin. Exp. Ophthalmol., vol. 241, no. 6, pp. 511–517, 2003, https://doi.org/10.1007/s00417-003-0683-z.Suche in Google Scholar PubMed
[25] J. H. Talamo, J. Meltzer, and J. Gardner, “Reproducibility of flap thickness with IntraLase FS and moria LSK-1 and M2 microkeratomes,” J. Refract. Surg., vol. 22, no. 6, pp. 556–561, 2006, https://doi.org/10.3928/1081-597x-20060601-07.Suche in Google Scholar
[26] Y. Zhou, L. Tian, N. Wang, and P. J. Dougherty, “Anterior segment optical coherence tomography measurement of LASIK flaps: femtosecond laser vs microkeratome,” J. Refract. Surg., vol. 27, no. 6, pp. 408–416, 2011, https://doi.org/10.3928/1081597X-20101029-01.Suche in Google Scholar PubMed
[27] J. Javaloy, M. T. Vidal, A. M. Abdelrahman, A. Artola, and J. L. Alvió, “Confocal microscopy comparison of intralase femtosecond laser and Moria M2 microkeratome in LASIK,” J. Refract. Surg., vol. 23, no. 2, pp. 178–187, 2007, https://doi.org/10.3928/1081-597x-20070201-10.Suche in Google Scholar PubMed
[28] I. Guber, L. Moetteli, L. Magnin, and F. Majo, “Moving from a mechanical microkeratome to a femtosecond laser for LASIK to correct astigmatic patients: clinical outcomes of a retrospective, consecutive, comparative study,” Klin. Monbl. Augenheilkd., vol. 230, no. 4, pp. 337–341, 2013, https://doi.org/10.1055/s-0032-1328384.Suche in Google Scholar PubMed
[29] G. M. Kezirian, and K. G. Stonecipher, “Comparison of the IntraLase femtosecond laser and mechanical keratomes for laser in situ keratomileusis,” J. Cataract Refract. Surg., vol. 30, no. 4, pp. 804–811, 2004, https://doi.org/10.1016/j.jcrs.2003.10.026.Suche in Google Scholar PubMed
[30] K. Stonecipher, T. S. Ignacio, and M. Stonecipher, “Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability,” Curr. Opin. Ophthalmol., vol. 17, no. 4, pp. 368–372, 2006, https://doi.org/10.1097/01.icu.0000233957.88509.2d.Suche in Google Scholar PubMed
[31] M. V. Netto, R. R. Mohan, F. W. Medeiros, et al.., “Femtosecond laser and microkeratome corneal flaps: comparison of stromal wound healing and inflammation,” J. Refract. Surg., vol. 23, no. 7, pp. 667–676, 2007, https://doi.org/10.3928/1081-597x-20070901-05.Suche in Google Scholar PubMed PubMed Central
[32] R. Gil-Cazorla, M. A. Teus, L. de Benito-Llopis, and I. Fuentes, “Incidence of diffuse lamellar keratitis after laser in situ keratomileusis associated with the IntraLase 15 kHz femtosecond laser and Moria M2 microkeratome,” J. Cataract Refract. Surg., vol. 34, no. 1, pp. 28–31, 2008, https://doi.org/10.1016/j.jcrs.2007.08.025.Suche in Google Scholar PubMed
[33] Y. Wang, J. Li, Y. Liu, and L. Xie, “Intraocular stray light after thin-flap LASIK with a femtosecond laser versus a mechanical microkeratome,” J. Refract. Surg., vol. 29, no. 8, pp. 534–539, 2013, https://doi.org/10.3928/1081597X-20130719-03.Suche in Google Scholar PubMed
[34] M. A. Sarayba, T. S. Ignacio, P. S. Binder, and D. B. Tran, “Comparative study of stromal bed quality by using mechanical, IntraLase femtosecond laser 15- and 30-kHz microkeratomes,” Cornea, vol. 26, no. 4, pp. 446–451, 2007, https://doi.org/10.1097/ico.0b013e318033e7cc.Suche in Google Scholar PubMed
[35] H. Ahn, J. K. Kim, C. K. Kim, et al.., “Comparison of laser in situ keratomileusis flaps created by 3 femtosecond lasers and a microkeratome,” J. Cataract Refract. Surg., vol. 37, no. 2, pp. 349–357, 2011, https://doi.org/10.1016/j.jcrs.2010.08.042.Suche in Google Scholar PubMed
[36] J. M. Vetter, M. Faust, A. Gericke, N. Pfeiffer, W. E. Weingärtner, and W. Sekundo, “Intraocular pressure measurements during flap preparation using 2 femtosecond lasers and 1 microkeratome in human donor eyes,” J. Cataract Refract. Surg., vol. 38, no. 11, pp. 2011–2018, 2012, https://doi.org/10.1016/j.jcrs.2012.05.042.Suche in Google Scholar PubMed
[37] D. Giguère, G. Olivié, F. Vidal, et al.., “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. Opt Image Sci. Vis., vol. 24, no. 6, pp. 1562–1568, 2007, https://doi.org/10.1364/josaa.24.001562.Suche in Google Scholar PubMed
[38] G. D. Kymionis, V. P. Kankariya, A. D. Plaka, and D. Z. Reinstein, “Femtosecond laser technology in corneal refractive surgery: a review,” J. Refract. Surg., vol. 28, no. 12, pp. 912–920, 2012, https://doi.org/10.3928/1081597X-20121116-01.Suche in Google Scholar PubMed
[39] R. Shah, S. Shah, and S. Sengupta, “Results of small incision lenticule extraction: all-in-one femtosecond laser refractive surgery,” J. Cataract Refract. Surg., vol. 37, pp. 127–137, 2011, https://doi.org/10.1016/j.jcrs.2010.07.033.Suche in Google Scholar PubMed
[40] M. Ang, D. Tan, and J. S. Mehta, “Small incision lenticule extraction (SMILE) versus laser in-situ keratomileusis (LASIK): study protocol for a randomized, non-inferiority trial,” Trials, vol. 13, p. 75, 2012, https://doi.org/10.1186/1745-6215-13-75.Suche in Google Scholar PubMed PubMed Central
[41] Juhasz, T. Method for corneal laser surgery. Applicant: ESCALON MEDICAL CORP. Filed in 1996; Granted in 2000; Published in 1998. Available at: http://worldwide.espacenet.com/publicationDetails/biblio?DB=worldwide.espacenet.com&II=3&ND=3&adjacent=true&locale=en_EP&FT=D&date=20000829&CC=US&NR=6110166A&KC=A.Suche in Google Scholar
[42] M. Blum, K. Täubig, C. Gruhn, W. Sekundo, and K. S. Kunert, “Five-year results of small incision lenticule extraction (ReLEx SMILE),” Br. J. Ophthalmol., vol. 100, no. 9, pp. 1192–1195, 2016. https://doi.org/10.1136/bjophthalmol-2015-306822.Suche in Google Scholar PubMed
[43] K. R. Pradhan, and S. Arba Mosquera, “Three-month outcomes of myopic astigmatism correction with small incision guided human-cornea treatment,” J. Refract. Surg., vol. 37, no. 5, pp. 304–311, 2021, https://doi.org/10.3928/1081597x-20210210-02.Suche in Google Scholar
[44] L. IzquierdoJr, D. Sossa, O. Ben-Shaul, and M. A. Henriquez, “Corneal lenticule extraction assisted by a low-energy femtosecond laser,” J. Cataract Refract. Surg., vol. 46, no. 9, pp. 1217–1221, 2020, https://doi.org/10.1097/j.jcrs.0000000000000236.Suche in Google Scholar PubMed
[45] M. He, W. Huang, and X. Zhong, “Central corneal sensitivity after small incision lenticule extraction versus femtosecond laser-assisted LASIK for myopia: a meta-analysis of comparative studies,” BMC Ophthalmol., vol. 15, p. 141, 2015, https://doi.org/10.1186/s12886-015-0129-5.Suche in Google Scholar PubMed PubMed Central
[46] R. Dou, Y. Wang, L. Xu, D. Wu, W. Wu, and X. Li, “Comparison of corneal biomechanical characteristics after surface ablation refractive surgery and novel lamellar refractive surgery,” Cornea, vol. 34, pp. 1441–1446, 2015, https://doi.org/10.1097/ico.0000000000000556.Suche in Google Scholar PubMed
[47] M. Elling, I. Kersten-Gomez, and H. B. Dick, “Photorefractive intrastromal corneal crosslinking for treatment of myopic refractive error: findings from 12-month prospective study using an epithelium-off protocol,” J. Cataract Refract. Surg., vol. 44, no. 4, pp. 487–495, 2018, https://doi.org/10.1016/j.jcrs.2018.01.022.Suche in Google Scholar PubMed
[48] D. E. Savage, D. R. Brooks, M. DeMagistris, et al.., “First demonstration of ocular refractive change using blue-IRIS in live cats,” Invest. Ophthalmol. Vis. Sci., vol. 55, no. 7, pp. 4603–4612, 2014, https://doi.org/10.1167/iovs.14-14373.Suche in Google Scholar PubMed PubMed Central
[49] L. Ding, R. Blackwell, J. F. Kunzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining,” Opt Express, vol. 14, no. 24, pp. 11901–11909, 2006, https://doi.org/10.1364/oe.14.011901.Suche in Google Scholar PubMed
[50] R. Huang, and W. H. Knox, “Quantitative photochemical scaling model for femtosecond laser micromachining of ophthalmic hydrogel polymers: effect of repetition rate and laser power in the four photon absorption limit,” Opt. Mater. Express, vol. 9, pp. 1049–1061, 2019, https://doi.org/10.1364/ome.9.001049.Suche in Google Scholar
[51] R. Huang, and W. H. Knox, “Femtosecond micro-machining of hydrogels: parametric study and photochemical model including material saturation,” Opt. Mater. Express, vol. 9, pp. 3818–3834, 2019, https://doi.org/10.1364/ome.9.003818.Suche in Google Scholar
[52] J. Noack, and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quant. Electron., vol. 35, no. 8, pp. 1156–1167, 1999, https://doi.org/10.1109/3.777215.Suche in Google Scholar
[53] IEC 60825, “Series on safety of laser products,” 2021.Suche in Google Scholar
[54] IEC 60601-2-22, “Medical electrical equipment - part 2–22: particular requirements for basic safety and essential performance of surgical, cosmetic, therapeutic and diagnostic laser equipment,” 2019.Suche in Google Scholar
[55] D. Sola, J. R. Aldana, and P. Artal, “The role of thermal accumulation on the fabrication of diffraction gratings in ophthalmic PHEMA by ultrashort laser direct writing,” Polymers, vol. 12, no. 12, p. 2965, 2020, https://doi.org/10.3390/polym12122965.Suche in Google Scholar PubMed PubMed Central
[56] N. Tinne, E. Lübking, H. Lubatschowski, A. Krüger, and T. Ripken, “The influence of a spatial and temporal pulse-overlap on the laser-tissue-interaction of modern ophthalmic laser systems,” Biomed. Tech. (Berl), vol. 57, no. Suppl. 1, 2012, https://doi.org/10.1515/bmt-2012-4115.Suche in Google Scholar PubMed
[57] E. Saerchen, S. Liedtke-Gruener, M. Kopp, A. Heisterkamp, H. Lubatschowski, and T. Ripken, “Femtosecond laser induced step-like structures inside transparent hydrogel due to laser induced threshold reduction,” PLoS One, vol. 14, no. 9, p. e0222293, 2019, https://doi.org/10.1371/journal.pone.0222293.Suche in Google Scholar PubMed PubMed Central
[58] International Commission on Non-Ionizing Radiation Protection, “Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 micron,” Health Phys., vol. 79, no. 4, pp. 431–440, 2000.10.1097/00004032-200010000-00013Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Community
- Preview: ICO World Congress of optics and photonics 2022
- Topical Issue: Lasers in Ophthalmology; Guest Editor: Holger Lubatschowski
- Editorial
- Lasers in ophthalmology
- Views
- Analytical optimization of the laser induced refractive index change (LIRIC) process: maximizing LIRIC without reaching the damage threshold
- Tutorial
- Probing biomechanical properties of the cornea with air-puff-based techniques – an overview
- Review Article
- Femtosecond lasers for eye surgery applications: historical overview and modern low pulse energy concepts
- Research Articles
- Effect of laser beam truncation (pinhole), (ordered) dithering, and jitter on residual smoothness after poly(methyl methacrylate) ablations, using a close-to-Gaussian beam profile
- Towards temperature controlled retinal laser treatment with a single laser at 10 kHz repetition rate
- A simple cornea deformation model
Artikel in diesem Heft
- Frontmatter
- Community
- Preview: ICO World Congress of optics and photonics 2022
- Topical Issue: Lasers in Ophthalmology; Guest Editor: Holger Lubatschowski
- Editorial
- Lasers in ophthalmology
- Views
- Analytical optimization of the laser induced refractive index change (LIRIC) process: maximizing LIRIC without reaching the damage threshold
- Tutorial
- Probing biomechanical properties of the cornea with air-puff-based techniques – an overview
- Review Article
- Femtosecond lasers for eye surgery applications: historical overview and modern low pulse energy concepts
- Research Articles
- Effect of laser beam truncation (pinhole), (ordered) dithering, and jitter on residual smoothness after poly(methyl methacrylate) ablations, using a close-to-Gaussian beam profile
- Towards temperature controlled retinal laser treatment with a single laser at 10 kHz repetition rate
- A simple cornea deformation model