Startseite GHz femtosecond processing with agile high-power laser
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

GHz femtosecond processing with agile high-power laser

High power and flexible fs lasers in GHz burst mode open new horizons for femtosecond laser processing
  • Eric Audouard EMAIL logo , Guillaume Bonamis , Clemens Hönninger und Eric Mottay
Veröffentlicht/Copyright: 3. September 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Bursts of GHz repetition rate pulses can significantly improve the ablation efficiency of femtosecond lasers. Depending on the process conditions, thermal mechanisms can be promoted and controlled. GHz ablation therefore combines thermal and non-thermal ablation mechanisms. With an optimal choice of the burst duration, the non-thermal ablation can be highly enhanced by a heating phase due to the first pulses in the burst. The GHz burst mode can be considered as a key function for the “agility” of new high-power lasers.


Corresponding author: Eric Audouard, Amplitude Laser Group, 11 Avenue de Canteranne, Cité de la Photonique, 6 allées des Lumières, Bâtiment MEROPA, Pessac, 33600, France, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] J. Schille, L. Schneider, and U. Loeschner, “Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality,” Appl. Phys. A, vol. 120, pp. 847–855, 2015, https://doi.org/10.1007/s00339-015-9352-4.Suche in Google Scholar

[2] J. Lopez, K. Mishchik, G. Mincuzzi, E. Audouard, E. Mottay, and R. Kling, “Efficient metal processing using high average power ultrafast laser,” J. Laser MicroNanoeng., vol. 12, p. 3, 2017, https://doi.org/10.2961/jlmn.2017.03.0020.Suche in Google Scholar

[3] J. Lopez, G. Mincuzzi, R. Devillard, et al.., “Ablation efficiency of high-average power ultrafast laser,,” J. Laser Appl., vol. 27, p. S28008, 2015, https://doi.org/10.2351/1.4906479.Suche in Google Scholar

[4] P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett., vol. 35, pp. 4169–4171, 2010, https://doi.org/10.1364/ol.35.004169.Suche in Google Scholar

[5] C. Hönninger and E. Audouard, “Multi 100 W femtosecond laser perspectives,” LTJ, vol. 2, pp. 50–53, 2018, https://doi.org/10.1002/latj.201800008.Suche in Google Scholar

[6] B. Neuenschwander, B. Jaeggi, D. J. Foerster, T. Kramer, and S. Remund, “Influence of the burst mode onto the specific removal rate for metals and semiconductors,” J. Laser Appl., vol. 31, no. 2, p. 022203, 2019, https://doi.org/10.2351/1.5096083.Suche in Google Scholar

[7] T. Kramer, Y. Zhang, S. Remund, et al.., “Increasing the specific removal rate for ultra short pulsed laser-micromachining by using pulse bursts,” J. Laser MicroNanoeng., vol. 12, pp. 107–114, 2017, https://doi.org/10.2961/jlmn.2017.02.0011.Suche in Google Scholar

[8] J. Mur, L. Pirker, N. Osterman, and R. Petkovšek, “Silicon crystallinity control during laser direct microstructuring with bursts of picosecond pulses,” Opt. Express, vol. 25, p. 26356, 2017, https://doi.org/10.1364/oe.25.026356.Suche in Google Scholar PubMed

[9] A. Žemaitis, P. Gečys, M. Barkauskas, G. Račiukaitis, and M. Gedvilas, “Highly-efficient laser ablation of copper by bursts of ultrashort tuneable (fs–ps) pulses,” Sci. Rep., vol. 9, p. 12280, 2019.10.1038/s41598-019-48779-wSuche in Google Scholar PubMed PubMed Central

[10] D. J. Foerster, S. Faas, S. Gröninger, F. Bauer, A. Michalowski, and T. Graf, “Shielding effects and re-deposition of material during processing of metals with bursts of ultra-short laser pulses,” Appl. Surf. Sci., vol. 440, p. 926, 2018.10.1016/j.apsusc.2018.01.297Suche in Google Scholar

[11] C. Kerse, H. Kalaycioglu, P. Elahi, et al., “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature, vol. 537, p. 84, 2016. https://doi.org/10.1038/nature18619.Suche in Google Scholar PubMed

[12] G. Bonamis, K. Mishchik, E. Audouard, et al.., “Use of bursts up to GHz repetition rate for femtosecond ablation efficiency increase,” J. Laser Appl., vol. 31, p. 022205, 2019.10.2351/1.5096087Suche in Google Scholar

[13] K. Mishchik, G. Bonamis, J. Qiao, et al.., “High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source,” Opt. Lett., vol. 44, p. 2193, 2019, https://doi.org/10.1364/ol.44.002193.Suche in Google Scholar

[14] G. Bonamis, E. Audouard, C. Hönninger, et al.., “Systematic study of laser ablation with GHz bursts of femtosecond pulses,” Opt. Express, vol. 28, p. 27702, 2020, https://doi.org/10.1364/oe.400624.Suche in Google Scholar

[15] R. Marjoribanks, C. Dille, J. Schoenly, et al.., “Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts,” Photonics Laser Med., vol. 1, p. 155, 2012, https://doi.org/10.1515/plm-2012-0020.Suche in Google Scholar

[16] J. Mur, J. Petelin, N. Osterman, and R. Petkovšek, “High precision laser direct microstructuring system based on bursts of picosecond pulses,” J. Phys. Appl. Phys., vol. 50, p. 325104, 2017, https://doi.org/10.1088/1361-6463/aa7b5a.Suche in Google Scholar

[17] E. Audouard and E. Mottay, “Engineering model for ultrafast laser microprocessing,” in Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI, SPIE, 2016, p. 9740.10.1117/12.2206203Suche in Google Scholar

[18] F. Bauer, A. Michalowski, T. T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express, vol. 23, p. 001035, 2015, https://doi.org/10.1364/OE.23.001035.Suche in Google Scholar PubMed

[19] A. Ancona, S. Döring, C. Jauregui, et al.., “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett., vol. 34, p. 3306, 2009, https://doi.org/10.1364/OL.34.003304.Suche in Google Scholar PubMed

[20] M. Domke, V. Matylitsky, and S. Stroj, “Surface ablation efficiency and quality of fs lasers in single-pulse mode, fs lasers in burst mode, and ns lasers,” Appl. Surf. Sci., vol. 505, p. 144594, 2020, https://doi.org/10.1016/j.apsusc.2019.144594.Suche in Google Scholar

[21] P. Elahi, C. Akçaalan, C. Ertek, K. Eken, O. Ilday, and H. Kalaycoglu, “High power Yb-based all-fiber laser delivering 300 fs pulses for high speed ablation cooled material removal,” Opt. Lett., vol. 43, p. 535, 2018, https://doi.org/10.1364/ol.43.000535.Suche in Google Scholar

[22] L. Zhibin, H. Matsumoto, and J. Kleinert, Ultrafast Laser Ablation of Copper with GHz-Bursts, SPIE, 2018, pp. 10519–10521.Suche in Google Scholar

[23] C. Gaudiuso, G. Giannuzzi, A. Volpe, P. M. Lugarà, I. Choquet, and A. Ancona, “Incubation during laser ablation with bursts of femtosecond pulses with picosecond delays,” Opt. Express, vol. 26, p. 3801, 2018, https://doi.org/10.1364/oe.26.003801.Suche in Google Scholar

[24] R. Ramaswami and K. Sivarajan, Optical Networks: A Practical Perspective, San Diego, CA, USA, Elsevier Science & Technology Books, 1998, OCLC: 892781758.Suche in Google Scholar

[25] A. Bartels, R. Cerna, C. Kistner, et al.., “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum., vol. 78, p. 035107, 2007, https://doi.org/10.1063/1.2714048.Suche in Google Scholar

[26] A. Hatziefremidis, D. Papadopoulos, D. Fraser, and H. Avramopoulos, “Laser sources for polarized electron beams in CW and pulsed accelerators,” Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., vol. 431, p. 4652, 1999, https://doi.org/10.1016/s0168-9002(99)00271-5.Suche in Google Scholar

[27] C. Kerse, H. H. Kalaycioglu, P. Elahi, N. Akçaalan, and F. M. Ilday, “3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser,” Opt. Commun., vol. 366, p. 404, 2016, https://doi.org/10.1016/j.optcom.2015.12.064.Suche in Google Scholar

[28] A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett., vol. 33, p. 1905, 2008, https://doi.org/10.1364/ol.33.001905.Suche in Google Scholar PubMed

[29] A. S. Mayer, C. R. Phillips, and U. Keller, “Watt-level 10-gigahertz solidstate laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun., vol. 8, p. 178, 2017, https://doi.org/10.1038/s41467-017-01999-y.Suche in Google Scholar PubMed PubMed Central

[30] R. Paschotta, L. Krainer, S. Lecomte, et al.., “Picosecond pulse sources with multi-GHz repetition rates and high output power,” New J. Phys., vol. 6, p. 174, 2004, https://doi.org/10.1088/1367-2630/6/1/174.Suche in Google Scholar

[31] A. Ishizawa, T. Nishikawa, A. Mizutori, et al.., “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express, vol. 19, p. 22402, 2011, https://doi.org/10.1364/oe.19.022402.Suche in Google Scholar

[32] A. Aubourg, J. Lhermite, S. Hocquet, E. Cormier, and G. Santarelli, “Generation of picosecond laser pulses at 1030 nm with gigahertz range continuously tunable repetition rate,” Opt. Lett., vol. 40, p. 5610, 2015, https://doi.org/10.1364/ol.40.005610.Suche in Google Scholar PubMed

[33] T. Hirsiger, M. Gafner, S. M. Remund, et al.., “Machining metals and silicon with GHz bursts: surprising tremendous reduction of the specific removal rate for surface texturing applications,” in Proc. SPIE 11267, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXV, 2020, p. 112670T, https://doi.org/10.1117/12.2543948.Suche in Google Scholar

[34] A. Žemaitis, M. Gaidys, P. Gečys, M. Barkauskas, and M. Gedvilas, “Femtosecond laser ablation by bibursts in the MHz and GHz pulse repetition rates,” Opt. Express, vol. 29, p. 7641, 2021.10.1364/OE.417883Suche in Google Scholar

[35] S. Schwarz, S. Rung, C. Esen, and R. Hellmann, “Enhanced ablation efficiency using GHz bursts in micromachining fused silica,” Opt. Lett., vol. 46, p. 282, 2021, https://doi.org/10.1364/ol.415959.Suche in Google Scholar

[36] T. Menold, M. Ametowobla, J. R. Köhler, and J. H. Werner, “Surface patterning of monocrystalline silicon induced by spot laser melting,” J. Appl. Phys., vol. 24, p. 163104, 2018, https://doi.org/10.1063/1.5049781.Suche in Google Scholar

[37] J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys., vol. 112, p. 103514, 2012, https://doi.org/10.1063/1.4766380.Suche in Google Scholar

[38] C. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev., vol. 134, p. A1058, 1964, https://doi.org/10.1103/physrev.134.a1058.Suche in Google Scholar

[39] J. Bonse, K.-W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci., vol. 221, p. 215, 2004, https://doi.org/10.1016/s0169-4332(03)00881-x.Suche in Google Scholar

[40] G. Bonamis, E. Audouard, C. Hönninger, et al.., Méthode de Détermination Des Conditions Opérationnelles d’un Procédé d’ablation Laser Femtoseconde à Très Haute Cadence Pour Un Matériau Donné, Patent n° 19 01188 (2019).Suche in Google Scholar

[41] L. L. Taylor, J. Qiao, and J. Qiao, “Optimization of femtosecond laser processing of silicon via numerical modeling,” Opt. Mater. Express, vol. 6, p. 2745, 2016, https://doi.org/10.1364/ome.6.002745.Suche in Google Scholar

[42] M. E. Povarnitsyn, P. R. Levashov, and D. V. Knyazev, “Simulation of ultrafast bursts of subpicosecond pulses: in pursuit of efficiency,” Appl. Phys. Lett., vol. 112, p. 051603, 2018, https://doi.org/10.1063/1.5012758.Suche in Google Scholar

[43] G. Bonamis, Conception et réalisation d’une source laser femtoseconde GHz et applications au régime d’ablation très haute cadence, Université de Bordeaux, 2020. https://www.theses.fr/2020BORD0293.Suche in Google Scholar

[44] J. Schille, L. Schneider, P. Lickschat, U. Loeschner, R. Ebert, and H. Exner, “High-pulse repetition frequency ultrashort pulse laser processing of copper,” J. Laser Appl., vol. 27, p. S28007, 2015, https://doi.org/10.2351/1.4906482.Suche in Google Scholar

[45] F. Nyenhuis, A. Michalowski, and J. A. L’Huillier, “Surface treatment with GHz-bursts,” in Proc. SPIE 11268, Laser-Based Micro- and Nanoprocessing, vol. XIV, 2020, p. 112680B, https://doi.org/10.1117/12.2544337.Suche in Google Scholar

[46] D. Metzner, P. Lickschat, and S. Weiÿmantel, “High-quality surface treatment using GHz burst mode with tunable ultrashort pulses,” Appl. Surf. Sci., vol. 531, p. 147270, 2020, https://doi.org/10.1016/j.apsusc.2020.147270.Suche in Google Scholar

[47] D. J. Forster, B. Jaggi, A. Michalowski, and B. Neuenschwander, “Review on experimental and theoretical investigations of ultra short pulse laser ablation of metals with burst pulses,” Materials, vol. 14, p. 3331, 2021, https://doi.org/10.3390/ma14123331.Suche in Google Scholar PubMed PubMed Central

[48] T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys., vol. 44, p. L687, 2005, https://doi.org/10.1143/jjap.44.l687.Suche in Google Scholar

[49] Y. Ozeki, T. Inoue, T. Tamaki, et al.., “Direct welding between copper and glass substrates with femtosecond laser pulses,” APEX, vol. 1, p. 082601, 2008, https://doi.org/10.1143/apex.1.082601.Suche in Google Scholar

[50] H. Penilla, L. F. Devia-Cruz, A. T. Wieg, et al.., “Ultrafast laser welding of ceramics,” Science, vol. 365, pp. 803–808, 2019, https://doi.org/10.1126/science.aaw6699.Suche in Google Scholar PubMed

[51] M. Chambonneau, Q. Li, V. Fedorov, M. Blothe, S. Tzortzakis, and S. Nolte, “Semiconductor-metal ultrafast laser welding with relocated filaments,” in Proc. SPIE 11676, Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications, vol. XXI, p. 1167610, 2021, https://doi.org/10.1117/12.2579220.Suche in Google Scholar

Received: 2021-05-31
Accepted: 2021-08-09
Published Online: 2021-09-03
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2021-0029/pdf?lang=de
Button zum nach oben scrollen