Startseite Atomic 2D electric field imaging of a Yagi–Uda antenna near-field using a portable Rydberg-atom probe and measurement instrument
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Atomic 2D electric field imaging of a Yagi–Uda antenna near-field using a portable Rydberg-atom probe and measurement instrument

  • Ryan Cardman , Luís F. Gonçalves , Rachel E. Sapiro , Georg Raithel und David A. Anderson
Veröffentlicht/Copyright: 5. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We present electric field measurements and imaging of a Yagi–Uda antenna near-field using a Rydberg atom–based radio frequency electric field measurement instrument. The instrument uses electromagnetically induced transparency with Rydberg states of cesium atoms in a room-temperature vapor and off-resonant RF-field–induced Rydberg-level shifts for optical SI-traceable measurements of RF electric fields over a wide amplitude and frequency range. The electric field along the antenna boresight is measured using the atomic probe at a spatial resolution of λRF/2 with electric field measurement uncertainties below 5.5%, an improvement to RF measurement uncertainties provided by existing antenna standards.


Corresponding authors: Ryan Cardman and David A. Anderson, Rydberg Technologies Inc., Ann Arbor, MI, USA; and Department of Physics, University of Michigan, Ann Arbor, MI, USA, E-mail: (R. Cardman), (D.A. Anderson)

Funding source: Rydberg Technologies

Funding source: Army Contracting Command-Aberdeen Proving Grounds

Award Identifier / Grant number: W911NF-17-C-0007

  1. 1

    Not to be confused with dBi, which represents the antenna gain relative to an isotropic emitter.

  2. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: This work was supported by Rydberg Technologies Inc. Part of the presented material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) and the Army Contracting Command-Aberdeen Proving Grounds (ACC-APG) under Contract Number W911NF-17-C-0007. The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

  4. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] C. A. Balanis, Antenna Theory: Analysis and Design, Hoboken, New Jersey, John Wiley & Sons, Inc., 2016.Suche in Google Scholar

[2] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd ed., Hoboken, New Jersey, John Wiley & Sons, Inc., 2012.Suche in Google Scholar

[3] J. D. Jackson, Classical Electrodynamics, 3rd ed., Hoboken, New Jersey, John Wiley & Sons, Inc., 1999.10.1119/1.19136Suche in Google Scholar

[4] D. Hill, M. Kanda, E. Laren, G. Koepke, and R. Orr, “Generating Standard Reference Electromagnetic Fields in the NIST Anechoic Chamber, 0.2 to 40 GHz,” NIST Technical Note 1335, 1990. https://doi.org/10.6028/NIST.TN.1335 31.10.6028/NIST.TN.1335Suche in Google Scholar

[5] C. M. Schmid, S. Schuster, R. Feger, and A. Stelzer, “On the effects of calibration errors and mutual coupling on the beam pattern of an antenna array,” IEEE Trans. Antenn. Propag., vol. 61, p. 4063, 2013, https://doi.org/10.1109/tap.2013.2259455.10.1109/TAP.2013.2259455Suche in Google Scholar

[6] T. F. Gallagher, Rydberg Atoms, Cambridge, England, Cambridge University Press, 1994.10.1017/CBO9780511524530Suche in Google Scholar

[7] P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics, Princeton, New Jersey, Princeton University Press, 2011.10.1515/9781400837045Suche in Google Scholar

[8] K.-J. Boller, A. Imamoǧlu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett., vol. 66, p. 2593, 1991, https://doi.org/10.1103/physrevlett.66.2593.10.1103/PhysRevLett.66.2593Suche in Google Scholar PubMed

[9] J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A, vol. 51, p. 576, 1995, https://doi.org/10.1103/physreva.51.576.10.1103/PhysRevA.51.576Suche in Google Scholar PubMed

[10] G. A. Costanzo, S. Micalizio, A. Godone, J. C. Camparo, and F. Levi, “ac Stark shift measurements of the clock transition in cold Cs atoms: Scalar and tensor light shifts of the $D_{2}$ transition,” Phys. Rev. A, vol. 93, 2016, Art no. 063404, https://doi.org/10.1103/physreva.93.063404.10.1103/PhysRevA.93.063404Suche in Google Scholar

[11] D. A. Anderson, S. A. Miller, G. Raithel, J. A. Gordon, M. L. Butler, and C. L. Holloway, “Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell,” Phys. Rev. App., vol. 5, 2016, Art no. 034003, https://doi.org/10.1103/physrevapplied.5.034003.10.1103/PhysRevApplied.5.034003Suche in Google Scholar

[12] D. A. Anderson, G. Raithel, T. Nithiwadee, S. A. Miller, and A. Schwarzkopf, “Atom-based electromagnetic radiation electric-field and power sensor,” 2018. US Patent 9,970,973 B2.Suche in Google Scholar

[13] A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett., vol. 98, 2007, Art no. 113003, https://doi.org/10.1103/physrevlett.98.113003.10.1103/PhysRevLett.98.113003Suche in Google Scholar PubMed

[14] J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys., vol. 8, p. 819, 2012, https://doi.org/10.1038/nphys2423.10.1038/nphys2423Suche in Google Scholar

[15] J. A. Gordon, C. L. Holloway, A. Schwarzkopf, , “Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms,” Appl. Phys. Lett., vol. 105, 2014, Art no. 024104, https://doi.org/10.1063/1.4890094.10.1063/1.4890094Suche in Google Scholar

[16] S. A. Miller, D. A. Anderson, and G. Raithel, “Radio-frequency-modulated Rydberg states in a vapor cell,” New J. Phys., vol. 18, 2016, Art no. 053017, https://doi.org/10.1088/1367-2630/18/5/053017.10.1088/1367-2630/18/5/053017Suche in Google Scholar

[17] D. H. Meyer, Z. A. Castillo, K. C. Cox, and P. D. Kunz, “Assessment of Rydberg atoms for wideband electric field sensing,” J. Phys. B., vol. 53, 2020, Art no. 034001, https://doi.org/10.1088/1361-6455/ab6051.10.1088/1361-6455/ab6051Suche in Google Scholar

[18] D. A. Anderson, R. E. Sapiro, and G. Raithel, “Rydberg atoms for radio-frequency communications and sensing: atomic receivers for pulsed RF field and phase detection,” IEEE Aero, vol. 35, p. 48, 2020, https://doi.org/10.1109/maes.2019.2960922.10.1109/MAES.2019.2960922Suche in Google Scholar

[19] D. A. Anderson, E. Paradis, G. Raithel, R. E. Sapiro, and C. L. Holloway, “High-resolution antenna near-field imaging and sub-THz measurements with a small atomic vapor-cell sensing element,” in 2018 11th Global Symposium on Millimeter Waves (GSMM), 2018, pp. 1–3.10.1109/GSMM.2018.8439437Suche in Google Scholar

[20] H.-S. Lui, H. T. Hui, and M. S. Leong, “A note on the mutual-coupling problems in transmitting and receiving antenna arrays,” IEEE Antenn. Propag. Mag., vol. 51, p. 171, 2009.10.1109/MAP.2009.5432083Suche in Google Scholar

[21] A. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antenn. Propag., vol. 34, p. 30, 1986, https://doi.org/10.1109/tap.1986.1143727.10.1109/TAP.1986.1143727Suche in Google Scholar

[22] F. Ferrara, C. Gennarelli, and R. Guerriero, “Near-field antenna measurement techniques,” in Handbook of Antenna Technologies, Z. N. Chen, D. Liu, H. Nakano, X. Qing, and T. Zwick, Eds., Singapore, Springer Singapore, 2016, pp. 2107–2163.10.1007/978-981-4560-44-3_117Suche in Google Scholar

[23] D. A. Anderson, R. E. Sapiro, and G. Raithel, “A self-calibrating SI-traceable broadband Rydberg atom-based radio-frequency electric field probe and measurement instrument,” arXiv:1910.07107v2, 2019.Suche in Google Scholar

[24] Q. Gao, S. Liverman, and A. X. Wang, “Design and characterization of high efficiency nanoantenna couplers with plasmonic integrated circuit,” J. Lightwave Technol., vol. 35, p. 3182, 2017, https://doi.org/10.1109/jlt.2016.2631403.10.1109/JLT.2016.2631403Suche in Google Scholar

[25] Y. Xiang, S. Amarie, W. Cai, , “Real-space mapping of mid-infrared near-field of Yagi–Uda antenna in the emission mode,” Opt. Express, vol. 27, p. 5884, 2019, https://doi.org/10.1364/oe.27.005884.10.1364/OE.27.005884Suche in Google Scholar PubMed

[26] J. Dyson, “Measurement of near fields of antennas and scatterers,” IEEE Trans. Antenn. Propag., vol. 21, p. 446, 1973, https://doi.org/10.1109/tap.1973.1140518.10.1109/TAP.1973.1140518Suche in Google Scholar

[27] D. A. Steck, Cesium D Line Data, 2003, https://steck.us/alkalidata/.Suche in Google Scholar

[28] A. Reinhard, T. C. Liebisch, B. Knuffman, and G. Raithel, Phys. Rev.A, vol. 75, 2007, https://doi.org/10.1103/physreva.75.039902.10.1103/PhysRevA.75.039902Suche in Google Scholar

[29] B. Wood and H. Bettin, “The Planck constant for the definition and realization of the kilogram,” Ann. Phys., vol. 531, 2019, Art no. 1800308, https://doi.org/10.1002/andp.201800308.10.1002/andp.201800308Suche in Google Scholar

[30] S. Yoshida, C. O. Reinhold, J. Burgdörfer, S. Ye, and F. B. Dunning Phys. Rev.A, vol. 86, 2012, Art no. 043415, https://doi.org/10.1103/physreva.86.043415.10.1103/PhysRevA.86.043415Suche in Google Scholar

[31] S. Uda, “On the wireless beam of short electric waves,” J. IEE (Japan), p. 273, 1926, https://doi.org/10.11526/ieejjournal1888.46.273.Suche in Google Scholar

[32] H. Yagi, “Beam transmission of ultra short waves,” Proc. IRE, vol. 26, 715, 1928, https://doi.org/10.1109/jrproc.1928.221464.10.1109/JRPROC.1928.221464Suche in Google Scholar

[33] H. Fan, S. Kumar, J. Sheng, J. Shaffer, C. Holloway, and J. Gordon, “Effect of vapor-cell geometry on Rydberg-atom-based measurements of radio-frequency electric fields,” Phys. Rev. Appl., vol. 4, 2015, Art no. 044015, https://doi.org/10.1103/physrevapplied.4.044015.10.1103/PhysRevApplied.4.044015Suche in Google Scholar

Received: 2020-06-17
Accepted: 2020-09-05
Published Online: 2019-10-05
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2020-0029/pdf?lang=de
Button zum nach oben scrollen