Startseite Native oxide layer effect on polarization cancellation for mirrors over the visible to near-infrared region
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Native oxide layer effect on polarization cancellation for mirrors over the visible to near-infrared region

  • Suchandra Banerjee EMAIL logo , Russell Chipman , Nathan Hagen und Yukitoshi Otani
Veröffentlicht/Copyright: 17. April 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The presence of native oxide layers on aluminum mirrors can be a nuisance for precision optical design. As the native oxide thickness varies from mirror to mirror, its effect cannot be completely canceled even in the conventional crossed fold mirror geometry. We show how this effect arises and how it can be mitigated, and provide an experimental demonstration in which the residual linear retardance and linear diattenuation are reduced to <0.14° and <0.001, respectively, over the visible and near-infra-red spectral range.

Acknowledgment

S. Banerjee is grateful to the Ministry of Education Culture, Sports, Science and Technology—Government of Japan (MEXT) for a supporting scholarship.

References

[1] J. B. Breckinridge, W. S. T. Lam and R. A. Chipman, PSAP 127, 445–468 (2015).10.1086/681280Suche in Google Scholar

[2] J. Zhang, X. Zhang, S. Tan and X. Xie, Curr. Opt. Photon 1, 364–371 (2017).Suche in Google Scholar

[3] J. Shamir and R. A. Chipman, J. Mod. Opt. 38, 327–347 (1991).10.1080/09500349114550351Suche in Google Scholar

[4] N. Clark and J. B. Breckenridge, Proc. SPIE 8146 (2011).Suche in Google Scholar

[5] A. B. Mahler, P. K. Smith and R. A. Chipman, Proc. SPIE 6682 (2007).Suche in Google Scholar

[6] W. S. T. Lam and R. Chipman, Appl. Opt. 54, 3236–3245 (2015).10.1364/AO.54.003236Suche in Google Scholar PubMed

[7] P. W. Maymon and R. A. Chipman. Opt. Photonics 1746, 148–156 (1992).Suche in Google Scholar

[8] Y. Yang and C. Yan, Appl. Opt. 55, 1343–1350 (2016).10.1364/AO.55.001343Suche in Google Scholar PubMed

[9] D. M. Harrington, S. R. Sueoka and A. J. White, J. Astron. Telesc. Instrum. Syst. 3 (2017).10.1117/1.JATIS.3.4.048001Suche in Google Scholar

[10] G. van Harten, F. Snik and C. U. Keller, Publ. Astron. Soc. Pac 121, 377–383 (2009).10.1086/599043Suche in Google Scholar

[11] G. Hass and N. W. Scott, J. Phys. Radium 11, 394–402 (1950).10.1051/jphysrad:01950001107039400Suche in Google Scholar

[12] S. Banerjee, R. Chipman, N. Hagen and Y. Otani, Opt. Commun. 454, 124456 (2020).10.1016/j.optcom.2019.124456Suche in Google Scholar

[13] H. Malitson and M. J. Dodge, J. Opt. Soc. Am. 62, 1405 (1972).Suche in Google Scholar

[14] G. Yun, S. C. McClain and R. A. Chipman, Appl. Opt. 50, 2866–2874 (2011).10.1364/AO.50.002866Suche in Google Scholar PubMed

[15] R. M. A. Azzam, Opt. Lett. 2, 148–150 (1978).10.1364/OL.2.000148Suche in Google Scholar

[16] D. H. Goldstein, Appl. Opt. 31, 6676–6683, (1992).10.1364/AO.31.006676Suche in Google Scholar PubMed

[17] S. Y. Lu and R. A. Chipman, J. Opt. Soc. Am. A 13, 1106–1113 (1996).10.1364/JOSAA.13.001106Suche in Google Scholar

[18] K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, et al., ACS Photonics 2, 326–333 (2015).10.1021/ph5004237Suche in Google Scholar PubMed PubMed Central

Received: 2020-01-22
Accepted: 2020-03-10
Published Online: 2020-04-17
Published in Print: 2020-09-25

©2020 THOSS Media & De Gruyter, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2020-0004/pdf
Button zum nach oben scrollen