Home InGaAs APD matrix sensors for SWIR gated viewing
Article
Licensed
Unlicensed Requires Authentication

InGaAs APD matrix sensors for SWIR gated viewing

  • Frank Rutz EMAIL logo , Rolf Aidam , Henning Heußen , Wolfgang Bronner , Robert Rehm , Matthias Benecke , Alexander Sieck , Simon Brunner , Benjamin Göhler and Peter Lutzmann
Published/Copyright: September 10, 2019
Become an author with De Gruyter Brill

Abstract

Short-wavelength infrared (SWIR) detection systems are increasingly in demand for surveillance, reconnaissance, and remote sensing applications. Eye-safe SWIR lasers can be utilized for active imaging systems with high image contrast and long detection range. The gated-viewing (GV) technique using short-pulse lasers and fast-gated cameras in the nanosecond range enables utilizing the distance information in addition to the signal intensity of the acquired images. The InGaAs material system is very well suited for the fabrication of high-performance SWIR photodetectors providing a typical cutoff wavelength of 1.7 μm, which covers the emission lines of available laser sources at typical telecom wavelengths around 1.55 μm. However, the usually short integration times needed for GV leads to very small photosignals. We report on the development of SWIR avalanche photodetector (APD) arrays with 640 × 512 pixels and 15 μm pixel pitch based on the InGaAs material system. The InGaAs-APD focal plane arrays have been successfully integrated into SWIR cameras which yield gain values of M ≈ 10 on camera level at a reverse bias voltage around 21 V and are the first InGaAs-based SWIR cameras worldwide providing a 640 × 512 image format and utilizing avalanche gain for signal amplification. The camera performance is demonstrated by SWIR laser GV sample images.

Acknowledgments

We would like to acknowledge S. Fibelkorn, T. Henkel, R. Lappe, W. Luppold, and S. Rombach for detector processing, and M. Prescher, T. Fuchs, M. Grimm, and L. Kirste for HRXRD and SIMS characterization. We also like to thank M. Finck from AIM Infrarot-Module GmbH for flip-chip hybridisation. This work has been supported by the German Federal Ministry of Defence, the Bundeswehr Technical Center WTD81, and the Bundeswehr Technical Center WTD91.

References

[1] Z. Li, X. Huang, Y. Cao, B. Wang, Y. Li, J. Zhang, Q. Zhang, C. Peng, F. Xu, and J. Pan, in Conference on Lasers and Electro-Optics, OSA Technical Digest, paper SM1N.1 (2019).Search in Google Scholar

[2] DIN EN 60825-1:2015-07, ‘Safety of Laser Products – Part 1: Equipment Classification and Requirements (IEC 60825-1:2014)’, (2015).Search in Google Scholar

[3] U. Wandinger, in ‘Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere’, (Springer, New York, 2005).Search in Google Scholar

[4] M. A. Itzler, X. Jiang, M. Entwistle, B. M. Onat and K. Slomkowski, Proc. SPIE 7681, 76810V (2010).Search in Google Scholar

[5] T. Baba, Y. Suzuki, K. Makino, T. Fujita, T. Hashi, et al., Proc. SPIE 10540, 105400L (2018).Search in Google Scholar

[6] X. Jiang, S. Wilton, I. Kudryashov, M. A. Itzler, M. Entwistle, et al., Proc. SPIE 10729, 107290C (2018).Search in Google Scholar

[7] L. F. Gillespie, J. Opt. Soc. Am. 56, 883–887 (1966).10.1364/JOSA.56.000883Search in Google Scholar

[8] I. Baker, D. Owton, K. Trundle, P. Thorne, K. Storie, et al., Proc. SPIE 6940, 69402L (2008).Search in Google Scholar

[9] B. Göhler and P. Lutzmann, Opt. Eng. 56, 031203 (2017).10.1117/1.OE.56.3.031203Search in Google Scholar

[10] Intevac, ‘Photonics/EBAPS Technology’, Intevac, Inc., [Online]. Available: www.intevac.com/intevacphotonics. [Accessed 8 Aug 2019].Search in Google Scholar

[11] V. Aebi and J. Boyle, ‘Electron Bombarded Active Pixel Sensor’, US Patent 6285018, 4 Sep 2001.Search in Google Scholar

[12] V. Aebi and J. Boyle, ‘Electron bombarded active pixel sensor’, EP Patent 1306906, 5 Oct 2011.Search in Google Scholar

[13] A. Sieck, M. Benecke, D. Eich, R. Oelmaier, J. Wendler and H. Figgemeier, J. Elec. Materi. 47, 5705 (2018).10.1007/s11664-018-6425-0Search in Google Scholar

[14] M. Laurenzis, Y. Lutz, F. Christnacher, A. Matwyschuk and J. M. Poyet, Optic. Engin.51, 061302 (2012).10.1117/1.OE.51.6.061302Search in Google Scholar

[15] P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, et al., Proc. SPIE 9249, 92490X (2014).Search in Google Scholar

[16] M. Levinshtein, S. Rumyantsev and M. Shur, Handbook Series on Semiconductor – Ternary and Quaternary III-V Compounds, (vol. 2, World Scientific, Singapore, 1996).10.1142/2046-vol2Search in Google Scholar

[17] Intevac, ‘LIVAR M506 Datasheet’, Jul 2018. [Online]. Available: www.intevac.com/intevacphotonics. [Accessed 8 Aug 2019].Search in Google Scholar

[18] F. Rutz, P. Kleinow, R. Aidam, W. Bronner, L. Kirste, et al., Proc. SPIE 8896, 88960C (2013).Search in Google Scholar

[19] P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, et al., Infrared Phys. Technol. 71, 298 (2015).10.1016/j.infrared.2015.05.001Search in Google Scholar

[20] P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, et al. Phys. Status Solidi A. 213, 925(2016).10.1002/pssa.201532556Search in Google Scholar

[21] F. Rutz, P. Kleinow, R. Aidam, W. Bronner, L. Stolch, et al., Proc. SPIE 9974, 99740G (2016).Search in Google Scholar

[22] F. Rutz, R. Aidam, A. Bächle, H. Heußen, W. Bronner, et al., Proc. SPIE 10795, 1079503 (2018).Search in Google Scholar

[23] S. Pellegrini, R. Warburton, L. Tan, J. Ng, A. Krysa, et al., IEEE J. Quant. Electron. 42, 397 (2006).10.1109/JQE.2006.871067Search in Google Scholar

[24] F. Zappa, A. Tosi and S. Cova, Proc. SPIE 6583, 65830E (2007).Search in Google Scholar

[25] F. Rutz, P. Kleinow, R. Aidam, H. Heussen, W. Bronner, et al., Proc. SPIE 9481, 948107 (2015).10.1117/12.2177802Search in Google Scholar

Received: 2019-06-07
Accepted: 2019-08-19
Published Online: 2019-09-10
Published in Print: 2019-12-18

©2019 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/aot-2019-0039/pdf
Scroll to top button