Home Fabrication of textured substrates for dye-sensitized solar cells using polydimethylsiloxane nanoimprint lithography
Article
Licensed
Unlicensed Requires Authentication

Fabrication of textured substrates for dye-sensitized solar cells using polydimethylsiloxane nanoimprint lithography

  • Na Yang , Chiemi Oka , Seiichi Hata and Junpei Sakurai EMAIL logo
Published/Copyright: June 29, 2019
Become an author with De Gruyter Brill

Abstract

We proposed a fabrication of nanoimprinted textures on a front glass/transparent conductive oxide interface for dye-sensitized solar cells (DSSCs). These textures were fabricated through polydimethylsiloxane (PDMS) nanoimprint lithography on organosilsesquioxane solution. The texture structures were estimated via optical simulation. Master molds were anodic aluminum oxide templates with nano-texture (N-Tx) and micro-nano double texture (D-Tx). Meanwhile, replicate molds used a hard PDMS. Fluorine-doped tin oxide and titanium dioxide were deposited on textured glass substrates to generate electrodes for DSSCs. Unlike the DSSCs without texture, textured DSSCs realized 11.4% (N-Tx) and 10% (D-Tx) improvement in conversion efficiency.

Acknowledgment

This research was supported by Takahashi Industrial and Economic Research Foundation.

References

[1] J. Lin, H. Yoshida, T. Iwahashi, T. Harada, J. Sakurai, et al., EU-PVSEC 2013, 2152–2154 (2013).Search in Google Scholar

[2] J. Lin, J. Cashmore, T. Iwahashi, J. Sakurai, P. Losio, et al., Abstract of the 40th IEEE-Photovoltaic Specialists Conference (IEEE-PVSC 40), #580 (2014, Denver, USA).Search in Google Scholar

[3] J. H. Lim, Y. H. Ko, J. W. Leem and J. S. Yu, Opt. Exp. 23, A169 (2015).10.1364/OE.23.00A169Search in Google Scholar

[4] S. Y. Heo, J. K. Koh, G. Kang, S. H. Ahn, W. S. Chi, et al., Adv. Energy Mater. 4, 1300632 (2014).10.1002/aenm.201300632Search in Google Scholar

[5] M. Rubin, Sol. Energy Mater. 12, 275–288 (1985).10.1016/0165-1633(85)90052-8Search in Google Scholar

[6] C. Haase and H. Stiebig, Appl. Phys. Lett. 91, 061116 (2007).10.1063/1.2768882Search in Google Scholar

[7] R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, et al., Opt. Exp. 17, 23058–23065 (2009).10.1364/OE.17.023058Search in Google Scholar

[8] J. B. Orhan, R. Monnard, E. V. Sauvain, L. Frsquet, D. Romang, et al., Sol. Energy Mater. Solar Cells 140, 344–350 (2015).10.1016/j.solmat.2015.04.027Search in Google Scholar

[9] C. Battaglia, J. Escarre, K. Söderström, L. Emi, L. Ding, et al., Nano Lett. 11, 661–665 (2011).10.1021/nl1037787Search in Google Scholar

[10] J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, et al., Sol. Energ. Mater. Sol. C 74, 457–467 (2002).10.1016/S0927-0248(02)00111-3Search in Google Scholar

[11] S. I. Noh, H. J. Ahn and D. H. Riu, Ceramics Int. 38, 3735–3739 (2012).10.1016/j.ceramint.2012.01.018Search in Google Scholar

[12] Q. H. Li, D. Zhu, W. Liu, Y. Liu and X. C. Ma, Appl. Sur. Aci. 254, 2922–2926 (2008).10.1016/j.apsusc.2007.09.104Search in Google Scholar

[13] T. Iwahashi, M. Morishima, T. Fujibayashi, R. Yang, J. Lin, et al., J. Appl. Phys. 118, 145302 (2015).10.1063/1.4932639Search in Google Scholar

[14] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, et al., Prog. Photovolt. Res. Appl. 27, 3–8 (2019).10.1002/pip.3102Search in Google Scholar

[15] F. Wang, N. K. Subbaiyan, Q. Wang, C. Rochford, G. Xu, et al., Appl. Mater. Interfaces 4, 1565–1572 (2012).10.1021/am201760qSearch in Google Scholar PubMed

[16] W. Jiang, H. Liu, L. Yin, Y. Shi and B. Chen, J. Phys. Chem. C 120, 9678–9684 (2016).10.1021/acs.jpcc.6b02687Search in Google Scholar

[17] A. Knott, X. Liu, O. Makarovskiy, J. O’sea, C. Tuck, et al., Build Simul. 12, 41–49 (2019).10.1007/s12273-018-0485-1Search in Google Scholar

[18] M. J. Yun, Y. H. Sim, S. I. Cha, S. H. Seo and D. Y. Lee, Sci. Rep. 7, 15027 (2017).10.1038/s41598-017-15110-4Search in Google Scholar PubMed PubMed Central

[19] S. Foster and S. John, Energy Environ. Sci. 6, 2972–2983 (2013).10.1039/c3ee40185eSearch in Google Scholar

[20] S. Li, J. Xu, W. Wang, I. Mathews, D. O’Mahony, et al., IEEE Trans. Nanotech. 13, 537–540 (2014).10.1109/TNANO.2014.2308896Search in Google Scholar

[21] Y. Igaku, S. Matsui, H. Ishigaki, J. Fujita, M. Ishida, et al., Jpn. J. Appl. Phys. 41, 4198–4202 (2002).10.1143/JJAP.41.4198Search in Google Scholar

[22] S. J. Wilson and M. C. Hutley, Opt. Acta 29, 993–1009 (1982).10.1080/713820946Search in Google Scholar

[23] A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, et al., Thin Solid Films 351, 73–78 (1999).10.1016/S0040-6090(98)01780-5Search in Google Scholar

[24] A. P. Li, F. Müller, A. Birner, K. Nielsch and U. Gösele, J. Appl. Phys. 84, 6023–6026 (1998).10.1063/1.368911Search in Google Scholar

[25] J.-T. Wu, W.-Y. Chang and S.-Y. Yang, J. Micromech. Microeng. 20, 075023 (2010).10.1088/0960-1317/20/7/075023Search in Google Scholar

[26] Y. Li, M. Zheng, L. Ma and W. Shen, Nanotechnology 17, 5101–5105 (2006).10.1088/0957-4484/17/20/010Search in Google Scholar

Received: 2019-01-16
Accepted: 2019-06-04
Published Online: 2019-06-29
Published in Print: 2019-12-18

© 2019 THOSS Media & De Gruyter, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/aot-2019-0010/pdf
Scroll to top button