Startseite Simulation of segmented mirrors with adaptive optics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simulation of segmented mirrors with adaptive optics

  • Johannes Störkle , Luzia Hahn und Peter Eberhard ORCID logo EMAIL logo
Veröffentlicht/Copyright: 23. Februar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work deals with the simulation-based investigation and control of optical systems that are mechanically influenced. Here, the focus is on the dynamic-optical modeling of vibration-sensitive, segmented mirror systems, which are used, for example, in large astronomic telescopes. Furthermore, an adaptive optical unit usually compensates for the optical aberrations due to atmospheric disturbances. In practice, these aberrations are detected and corrected within a few seconds using deformable mirrors. However, to further improve the performance of these optical systems, dynamic disturbances in the mechanics, i.e. small movements and deformations of the optical surfaces, must also be taken into account. For the investigation of such cases, multidisciplinary simulation methods are developed and presented.

Acknowledgments

The authors thank Alois Herkommer (Institute of Applied Optics, University of Stuttgart) for the invitation to participate in this special issue.

References

[1] H. Ebel, Modellierung eines Shack-Hartmann-Wellenfrontsensors für dynamisch-optische Simulationen. Simtech-Projektarbeit SA-6 (Institut für Technische und Numerische Mechanik, Universität Stuttgart, 2014).Suche in Google Scholar

[2] R. Tyson, ‘Principles of Adaptive Optics’, 4th ed. (CRC Press, Boca Raton, 2015).10.1201/b19712Suche in Google Scholar

[3] M. Böhm, J.U. Pott, O. Sawodny, T. Herbst and M. Kürster, MNRAS Monthly Notices R. Astronom. Soc. 442, 2446–2455 (2014).10.1093/mnras/stu1012Suche in Google Scholar

[4] T. Ruppel, S. Dong, F. Rooms, W. Osten and O. Sawodny, IEEE Trans. Control Syst. Technol. 21, 579–589 (2013).10.1109/TCST.2012.2186813Suche in Google Scholar

[5] M. Böhm, J.U. Pott, O. Sawodny, D. Defrére and P. Hinz, IEEE Trans. Control Syst. Technol. 25, 1384–1393 (2016).10.1109/TCST.2016.2601627Suche in Google Scholar

[6] J. Störkle and P. Eberhard, in ‘Proc. SPIE, Integrated Modeling of Complex Optomechanical Systems II’ (2016), vol. 10012, pp. 100120C–100120C–5.10.1117/12.2199538Suche in Google Scholar

[7] J. Störkle and P. Eberhard, in ‘Proc. SPIE, Modeling, Systems Engineering, and Project Management for Astronomy VI’ (2016), vol. 9911, pp. 99111E–99111E–15.10.1117/12.2230692Suche in Google Scholar

[8] J. Störkle, Dynamic simulation and control of optical systems. Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, vol. 58 (Shaker Verlag, Aachen, 2018).Suche in Google Scholar

[9] J. Störkle and P. Eberhard, J. Astronom. Telescopes Instrum. Syst. (JATIS) 024001–1–024001–18 (2017).Suche in Google Scholar

[10] B. Abraham, S. Adkins, B. Alcott, D. Alvarez, R. Alvarez, et al., Thirty Meter Telescope — construction proposal. Technical Report (TMT Observatory Corporation, 2007).Suche in Google Scholar

[11] G. Ming Dai and V.N. Mahajan, J. Opt. Soc. Am. A 24, 139–155 (2007).10.1364/JOSAA.24.000139Suche in Google Scholar

[12] J. Nijenhuis, R. Hamelinck and B. Braam, in ‘Proc. SPIE, Modern Technologies in Space- and Ground-Based Telescopes and Instrumentation II’ (2012), vol. 8450, pp. 84500A–84500A-9.Suche in Google Scholar

Received: 2018-11-29
Accepted: 2019-01-29
Published Online: 2019-02-23
Published in Print: 2019-04-24

©2019 THOSS Media & De Gruyter, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2018-0063/html
Button zum nach oben scrollen