Abstract
Materials with high deep-ultraviolet (DUV; λ<300 nm) transmission are important for many industrial applications. Fluoride single crystals and various glasses, pure SiO2, fluoride, phosphate, multicomponent silicates, and organic materials (PMMA), were investigated. The role of intrinsic absorption (UV edge) due to electron transitions between the main components, and extrinsic absorption due to trace impurities, effect of polyvalent ions, redox behavior, and radiation-induced transmission loss were considered. The optical basicity and optical properties were used to order the materials.
Acknowledgments
The author wishes to thank especially Rotraud Atzrodt for her assistance over a very long time, as well as all her co-workers and students for their support. This work was supported by BMBF grant numbers 03M2713D8, AWO 223895L, DFG EH140, SCHOTT AG, and HERAEUS.
References
[1] M. J. Weber, ‘Handbook of Optical Materials’, (CRC Press LLC, New York, 2003).Search in Google Scholar
[2] D. Ehrt and W. Seeber, J. Non-Cryst. Solids 129, 19–30 (1991).10.1016/0022-3093(91)90076-ISearch in Google Scholar
[3] P. Shiv Halasyamani and W. Zhang, Inorg. Chem. 56, 12077–12085 (2017).10.1021/acs.inorgchem.7b02184Search in Google Scholar
[4] R. Brückner, ‘Silicon Dioxide, Encyclopedia of Appl. Phys. 8’, (VCH Publisher Inc., New York, 1997).Search in Google Scholar
[5] D. Ehrt, Proc. SPIE 1761, 213–222 (1992).10.1117/12.138929Search in Google Scholar
[6] D. Ehrt, M. Carl, T. Kittel, M. Müller and W. Seeber, J. Non-Cryst. Solids 177, 405–419 (1994).10.1016/0022-3093(94)90555-XSearch in Google Scholar
[7] D. Ehrt, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 56, 217–234 (2015).10.13036/17533562.56.6.217Search in Google Scholar
[8] D. Ehrt, M. Leister and A. Matthai, Molten Salt Forum 5–6, 547–554 (1998).Search in Google Scholar
[9] H. Ebendorff-Heidepriem and D. Ehrt, Opt. Mater. 15, 7–25 (2000).10.1016/S0925-3467(00)00018-5Search in Google Scholar
[10] D. Ehrt, P. Ebeling and U. Natura, J. Non-Cryst. Solids 263–264, 240–250 (2000).10.1016/S0022-3093(99)00681-XSearch in Google Scholar
[11] D. Ehrt, J. Non-Cryst. Solids 196, 304–308 (1996).10.1016/0022-3093(95)00604-4Search in Google Scholar
[12] D. Ehrt, A. Matthai and M. Leister, Phys. Chem. Glasses 42, 231–239 (2001).Search in Google Scholar
[13] D. Ehrt, P. Ebeling, U. Natura, U. Kolberg, K. Naumann, et al., in ‘Proc. Int. Congr. Glass I. Invited Papers’, Edinburgh, Scotland, 1–6 July 2001, pp. 84–93.Search in Google Scholar
[14] D. Ehrt, C. R. Chim. 5, 679–692 (2002).10.1016/S1631-0748(02)01432-7Search in Google Scholar
[15] D. Ehrt, J. Non-Cryst. Solids 348, 22–29 (2004).10.1016/j.jnoncrysol.2004.08.121Search in Google Scholar
[16] D. Ehrt and A. Herrmann, Verre 11, 13–18 (2005).10.1088/2058-7058/18/11/21Search in Google Scholar
[17] J. A. Duffy and M. D. Ingram, J. Am. Chem. Soc. 93, 6448 (1971); J. Non-Cryst. Solids 21, 373 (1976); in ‘Optical Properties of Glass’, Ed. By D. R. Uhlmann and N. J. Kreidl (American Ceramic Society, Westerville, OH, 1991) pp. 159–184.10.1021/ja00753a019Search in Google Scholar
[18] J. A. Duffy, M. D. Ingram and S. Fong, Phys. Chem. Chem. Phys. 2, 1829–1833 (2000).10.1039/b000489hSearch in Google Scholar
[19] L. L. Velli, C. P. E. Varsamis, E. I. Kamitsos, D. Möncke and D. Ehrt, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 49, 182–187 (2008).Search in Google Scholar
[20] U. Natura and D. Ehrt, Glass Sci. Technol. 72, 295–301 (1999).Search in Google Scholar
[21] U. Natura, D. Ehrt and K. Naumann, Glass Sci. Technol. 74, 23–31 (2001).Search in Google Scholar
[22] P. Ebeling, D. Ehrt and M. Friedrich, Phosphorus Res. Bull. 10, 484–489 (1999).10.3363/prb1992.10.0_484Search in Google Scholar
[23] U. Natura, T. Feurer and D. Ehrt, Nucl. Instrum. Methods Phys. Res. B 166–167, 470–475 (2000).10.1016/S0168-583X(99)00698-9Search in Google Scholar
[24] U. Natura and D. Ehrt, Nucl. Instrum. Methods. Phys. Res. B 174, 143–150 (2001).10.1016/S0168-583X(00)00449-3Search in Google Scholar
[25] U. Natura and D. Ehrt, Nucl. Instrum. Methods Phys. Res. B 174, 151–158 (2001).10.1016/S0168-583X(00)00450-XSearch in Google Scholar
[26] D. Ehrt, Glass Technol. 41, 182–185 (2000).Search in Google Scholar
[27] D. Ehrt and P. Ebeling, Glass Technol. 44, 46–49 (2003).Search in Google Scholar
[28] D. Möncke and D. Ehrt, in ‘Materials Science Research Horizons’, Ed. by H. P. Glick, (Nova Science Publisher, Inc., New York, 2007) pp. 1–56.Search in Google Scholar
[29] D. Möncke, Int. J. Appl. Glass Sci. 6, 1–19 (2015), DOI: 10.1111/ijag.12135.10.1111/ijag.12114Search in Google Scholar
[30] U. Natura, D. Keutel, M. Letz, L. Parthier and K. Knapp, Proc. SPIE 6520, 652030, 1–4 (2007).Search in Google Scholar
[31] A. Burkert, D. Keutel and U. Natura, Proc. SPIE 6720, 67201K, 1–5 (2007).10.1117/12.752813Search in Google Scholar
[32] U. Natura, S. Rix, M. Letz and L. Parthier, Proc. SPIE 7504, Laser-Induced Damage in Optical Materials: 2009, 75041P (31 December 2009), DOI: 10.1117/12.836409.10.1117/12.836409Search in Google Scholar
[33] H.-D. Witzke, A. Schreiber, U. Klett and B. Uebbing, in ‘Proc. XIX Int. Congr. Glass Edinburgh 1–6 July 2001’, Phys. Chem. Glasses 43C, 155–158 (2002).Search in Google Scholar
[34] A. Schreiber, B. Kühn, E. Arnold, F.-J. Schilling and H.-D. Witzke, J. Phys. D Appl. Phys. 38, 3242–3250 (2005).10.1088/0022-3727/38/17/S28Search in Google Scholar
[35] M. Stamminger, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 57, 15–20 (2016).10.13036/1753-3546.57.1.015Search in Google Scholar
[36] U. Natura, O. Sohr, R. Martin, M. Kahlke and G. Fasold, Proc. SPIE 5273, 155–163 (2003).10.1117/12.521739Search in Google Scholar
[37] U. Natura, O. Sohr, M. Letz, R. Martin, M. Kahlke, et al., Proc. SPIE 5377, 1708–1714 (2004).10.1117/12.531653Search in Google Scholar
[38] U. Natura, R. Martin, G. Goenna, M. Kahlke and G. Fasold, Proc. SPIE 5754, 1312–1319 (2005).10.1117/12.599319Search in Google Scholar
[39] A. Burkert, W. Triebel, U. Natura and R. Martin, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 48, 107–112 (2007).Search in Google Scholar
[40] B. Kühn, B. Uebbing, M. Stamminger, I. Radosevic and S. Kaiser, J. Non-Cryst. Solids 130, 23–32 (2003).10.1016/j.jnoncrysol.2003.08.063Search in Google Scholar
[41] D. Möncke and D. Ehrt, Glass Sci. Technol. 75, 163–173 (2002).Search in Google Scholar
[42] D. Möncke and D. Ehrt, Glass Sci. Technol. 75, 243–253 (2002).Search in Google Scholar
[43] D. Möncke, D. Ehrt, H. Eckert and V. Mertens, Glass Technol. 44, 113–116 (2003).Search in Google Scholar
[44] D. Ehrt, in ‘14th Conf. on Glass & Ceramics’, Varna, Bulgaria, 24–28 Sept. 2002, Proc. Vol. 1, pp. 152–157.Search in Google Scholar
[45] T. Kloss, G. Lautenschläger and K. Schneider, Glass Technol. 41, 177–181 (2000).Search in Google Scholar
[46] A. Schütz, D. Ehrt, M. Dubiel, X. C. Yang, B. Mosel, et al., Glass Sci. Technol. 77, 295–305 (2004).Search in Google Scholar
[47] D. Ehrt, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 49, 68–72 (2008).Search in Google Scholar
[48] D. Ehrt, IOP Conf. Ser. Mater. Sci. Eng. 21, 012001 (2011).10.1088/1757-899X/21/1/012001Search in Google Scholar
[49] D. Möncke, G. Tricot, D. Ehrt and E. I. Kamitsos, J. Chem. Tech. Metall. 50, 381–386 (2015).Search in Google Scholar
[50] D. Möncke, G. Tricot, A. Winterstein, D. Ehrt and E. I. Kamitsos, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 58, 171–178 (2017).10.13036/17533562.58.4.171Search in Google Scholar
[51] A. P. Howers, N. M. Vedishcheva, A. Samoson, J. V. Hanna, M. E. Smith, et al., Phys. Chem. Chem. Phys. 3, 11919–11928 (2011).10.1039/c1cp20771gSearch in Google Scholar
[52] G. Tricot, Phys. Chem. Chem. Phys. 18, 26764–26770 (2016).10.1039/C6CP02996ESearch in Google Scholar
[53] A. Molchanov, U. Hilburger, J. Friedrich, M. Finkbeiner, G. Wehrhan, et al., Cryst. Res. Technol. 37, 77–82 (2002).10.1002/1521-4079(200202)37:1<77::AID-CRAT77>3.0.CO;2-KSearch in Google Scholar
[54] L. Skuja, J. Non-Cryst. Solids 239, 16–48 (1998).10.1016/S0022-3093(98)00720-0Search in Google Scholar
[55] M. C. Paul, R. Sen, R. E. Youngman and A. Dhar, J. Non-Cryst. Solids 354, 5408–5420 (2008).10.1016/j.jnoncrysol.2008.09.020Search in Google Scholar
[56] R. E. Youngman and S. Sen, J. Non-Cryst. Solids 337, 182–186 (2004).10.1016/j.jnoncrysol.2004.03.122Search in Google Scholar
[57] A. N. Trukhin, M. F. Kink, Y. A. Maksimov, R. A. Kink, T. A. Ermolenko, et al., J. Non-Cryst. Solids 342, 25–31 (2004).10.1016/j.jnoncrysol.2004.07.006Search in Google Scholar
[58] J. Kirchhof and S. Unger, J. Non-Cryst. Solids 354, 540–545 (2008).10.1016/j.jnoncrysol.2007.08.084Search in Google Scholar
[59] D. Ehrt and R. Keding, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 50, 165–171 (2009).Search in Google Scholar
[60] D. Möncke, D. Ehrt and E. I. Kamitsos, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 54, 42–51 (2013).Search in Google Scholar
[61] D. Ehrt, H. Reiß and W. Vogel, Silikattechnik 27, 304–309 (1976).Search in Google Scholar
[62] D. Ehrt, H. Reiß and W. Vogel, Silikattechnik 28, 359–364 (1977).Search in Google Scholar
[63] A. Herrmann, S. Fibikar and D. Ehrt, J. Non-Cryst. Solids 355, 2093–2101 (2009).10.1016/j.jnoncrysol.2009.06.033Search in Google Scholar
[64] D. Ehrt, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 47, 669–674 (2006).Search in Google Scholar
[65] D. Möncke and D. Ehrt, Opt. Mater. 25, 425–437 (2004).10.1016/j.optmat.2003.11.001Search in Google Scholar
[66] D. Möncke and D. Ehrt, Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 48, 317–323 (2007).Search in Google Scholar
©2018 THOSS Media & De Gruyter, Berlin/Boston
Articles in the same Issue
- Cover and Frontmatter
- Community
- News
- Editorial
- Optical materials
- Topical Issue: Optical Materials Part 1
- Tutorial
- Parametric analysis of thin multifunctional elastomeric optical sheets
- Review Article
- Deep-UV materials
- Research Articles
- Frequency-dependent electro-optics of liquid crystal devices utilizing nematics and weakly conducting polymers
- Design of a 1D phase-mask translational scanner for large-size spatially coherent grating printing
- Single pulse femtosecond laser ablation of silicon – a comparison between experimental and simulated two-dimensional ablation profiles
Articles in the same Issue
- Cover and Frontmatter
- Community
- News
- Editorial
- Optical materials
- Topical Issue: Optical Materials Part 1
- Tutorial
- Parametric analysis of thin multifunctional elastomeric optical sheets
- Review Article
- Deep-UV materials
- Research Articles
- Frequency-dependent electro-optics of liquid crystal devices utilizing nematics and weakly conducting polymers
- Design of a 1D phase-mask translational scanner for large-size spatially coherent grating printing
- Single pulse femtosecond laser ablation of silicon – a comparison between experimental and simulated two-dimensional ablation profiles