Startseite Precision injection molding of freeform optics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Precision injection molding of freeform optics

  • Fengzhou Fang

    Fengzhou Fang, a professor from Tianjin University in China, has been working in the field of manufacturing since graduating from college in 1982. His research interests are in the areas of micro/nano machining, medical devices manufacturing, and optical freeform manufacturing. Dr. Fang is a fellow of the International Academy for Production Engineering (CIRP), the International Society for Nanomanufacturing (ISNM), and the Society of Manufacturing Engineers (SME). He is the president of ISNM, a council member of CIRP, the editor-in-chief of the International Journal of Nanomanufacturing (IJNM), and a recipient of SME Albert M. Sargent Progress Award.

    EMAIL logo
    , Nan Zhang

    Nan Zhang is an Associate Professor from Tianjin University in China. He was awarded his PhD at 2013 from University College Dublin, Ireland. He jointed in Centre of MicroNano Manufacturing Technology (MNMT) at Tianjin University in 2015. His research interests include precision injection molding, micro/nano injection molding, prototyping and manufacturing polymeric microfluidic devices and manufacturing micro/nano tools.

    und Xiaodong Zhang

    Xiaodong Zhang is an Associate Professor from Tianjin University in China. He received his PhD in Measurement Science and Technology from Tianjin University in 2007. He has been the head of ‘Ultra-precision machining and freeform optics manufacture’ group at Centre of MicroNano Manufacturing Technology (MNMT) since 2008. His research interests include diamond machining, optical metrology, and applications of complex optical surfaces.

Veröffentlicht/Copyright: 26. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

About the authors

Fengzhou Fang

Fengzhou Fang, a professor from Tianjin University in China, has been working in the field of manufacturing since graduating from college in 1982. His research interests are in the areas of micro/nano machining, medical devices manufacturing, and optical freeform manufacturing. Dr. Fang is a fellow of the International Academy for Production Engineering (CIRP), the International Society for Nanomanufacturing (ISNM), and the Society of Manufacturing Engineers (SME). He is the president of ISNM, a council member of CIRP, the editor-in-chief of the International Journal of Nanomanufacturing (IJNM), and a recipient of SME Albert M. Sargent Progress Award.

Nan Zhang

Nan Zhang is an Associate Professor from Tianjin University in China. He was awarded his PhD at 2013 from University College Dublin, Ireland. He jointed in Centre of MicroNano Manufacturing Technology (MNMT) at Tianjin University in 2015. His research interests include precision injection molding, micro/nano injection molding, prototyping and manufacturing polymeric microfluidic devices and manufacturing micro/nano tools.

Xiaodong Zhang

Xiaodong Zhang is an Associate Professor from Tianjin University in China. He received his PhD in Measurement Science and Technology from Tianjin University in 2007. He has been the head of ‘Ultra-precision machining and freeform optics manufacture’ group at Centre of MicroNano Manufacturing Technology (MNMT) since 2008. His research interests include diamond machining, optical metrology, and applications of complex optical surfaces.

Acknowledgments

The authors thank Mr. Y. W Guo and Mr. Y. B Lu for their support on diamond machining and injection molding of plastic optics. Acknowledgments are extended to the support of the National Natural Science Foundation (Grant No. 51320105009 and 91423101) and the ‘111’ project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (Grant No. B07014).

References

[1] The Nimrud lens/the Layard lens. Collection database. The British Museum. Retrieved Oct 21, 2012.Suche in Google Scholar

[2] G. E. R. Lloyd, in ‘Greek Science After Aristotle’, Ed. By M. I. Finley, (Press, Penguin Random House Canada, 2013) pp. 1–208.Suche in Google Scholar

[3] http://www.zeiss.com/vision-care/en_de/better-vision/understanding-vision/lenses-and-solutions/the-history-of-spectacles.html. [Accessed: 1-Jan-2012].Suche in Google Scholar

[4] http://www.glasseshistory.com/glasses-history/how-glasses-are-made/. [Accessed: 20-Jun-2016].Suche in Google Scholar

[5] F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang and C. Evans, CIRP. Ann-Manuf. Techn. 62, 823 (2013).10.1016/j.cirp.2013.05.003Suche in Google Scholar

[6] T. T. Saito, Appl. Optics 14, 1773 (1975).10.1364/AO.14.001773Suche in Google Scholar

[7] A. Kobayashi and K. Saito, J. Poly. Sci. 58, 1377 (1962).10.1002/pol.1962.1205816691Suche in Google Scholar

[8] R. B. Li, L. B. Kong, Z. H. Zhang, X. Du, X. Chen, et al., Chin. J. Mech. Eng. 49, 144 (2013).10.3901/CJME.2013.01.144Suche in Google Scholar

[9] E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. C. Aurich, P. Shore, et al., CIRP. Ann-Manuf. Techn. 59, 652 (2010).10.1016/j.cirp.2010.05.001Suche in Google Scholar

[10] Y. Yamamoto, H. Suzuki, T. Okino, Y. Hijikata, T. Moriwaki, et al., Ultra Precision Grinding of Micro Aspherical Surface. In: Proceedings of ASPE Annual Meeting, 558 (2004).Suche in Google Scholar

[11] H. Suzuki, T. Kuriyagawa, K. Syoji, K. Tanaka, J. Yan, et al., J. Jpn. S. Prec. Eng. 64, 1350 (1998).10.2493/jjspe.64.1350Suche in Google Scholar

[12] Y. E. Tohme, in ‘MOEMS-MEMS 2007 Micro and Nanofabrication: International Society for Optics and Photonics’ (2207), pp. 64620K-K-8.Suche in Google Scholar

[13] E. Brinksmeier, R. Gläbe and J. Osmer, CIRP. Ann-Manuf. Techn. 55, 551 (2006).10.1016/S0007-8506(07)60480-6Suche in Google Scholar

[14] Z. J. Li, F. Z. Fang, H. Gong and X. D. Zhang, Int. J. Adv. Manuf. Tech. 68, 1717 (2013).10.1007/s00170-013-4970-5Suche in Google Scholar

[15] T. Shibasaka and N. Ishida, Trans JSME 75, 2399 (2009).10.1299/kikaic.75.2399Suche in Google Scholar

[16] T. F. Dai, F. Z. Fang, X. T. Hu, J. Vac. Sci. Technol. B 27, 1335 (2009).10.1116/1.3049516Suche in Google Scholar

[17] Y. Namba, T. Shimomura, A. Fushiki, A. Beaucamp, I. Inasaki, et al., CIRP. Ann-Manuf. Techn. 57, 337 (2008).10.1016/j.cirp.2008.03.077Suche in Google Scholar

[18] Y. Tohme, R. Murray and E. Allaire, Principles and applications of the slow slide servo Moore Nanotechnology Systems White Paper (2005).Suche in Google Scholar

[19] A. Yi and L. Li, Opt. Lett. 30, 1707 (2005).10.1364/OL.30.001707Suche in Google Scholar

[20] C. N. Huang, L. Li and A. Yi, Microsyst. Technol. 15, 559 (2009).10.1007/s00542-008-0706-0Suche in Google Scholar

[21] L. Dick, S. Risse and A. Tünnermann, Adv. Opt. Techn. 1, 39 (2012).10.1515/aot-2011-0009Suche in Google Scholar

[22] X. Zhang, F. Fang, L. Yu, L. Jiang and Y. Guo, Opt. Eng. 52, 023401 (2013).10.1117/1.OE.52.2.023401Suche in Google Scholar

[23] X. L. Liu, X. D. Zhang, F. Z. Fang and S. Liu, J. Mach. Tool. Manu. 105, 45–57 (2016).10.1016/j.ijmachtools.2016.03.001Suche in Google Scholar

[24] X. L. Liu, X. D. Zhang, F. Z. Fang, Z. Zeng, H. Gao, et al., J. Mach. Tool. Manu. 96, 80 (2015).10.1016/j.ijmachtools.2015.05.008Suche in Google Scholar

[25] S. Scheiding, A. Yi, A. Gebhardt, L. Li, S. Risse, et al., Opt. Express 19, 23938 (2011).10.1364/OE.19.023938Suche in Google Scholar PubMed

[26] F. Z. Fang and Y.C. Liu, J. Micromech. Microeng. 14, 984 (2004).10.1088/0960-1317/14/7/020Suche in Google Scholar

[27] L. B. Kong, C. F. Cheung, S. To and C. T. Cheng, Optik, 124, 2848 (2013).10.1016/j.ijleo.2012.08.061Suche in Google Scholar

[28] E. Brinksmeier, R. Gläbe and C. Flucke, Prod. Eng. 2, 33 (2008).10.1007/s11740-008-0082-8Suche in Google Scholar

[29] ISO 2015 Optics and photonics – preparation of drawings for optical elements and systems – Part 5: Surface form tolerances.Suche in Google Scholar

[30] C. Hopmann and P. Walach, Piezo-based mold design for injection-compression molding of high precision plastics lenses with minimized centering error. In: ANTEC, (Cincinnati, Ohio: Society of Plastic Engineers) (2013).Suche in Google Scholar

[31] X. Lu and L. S. Khim, J. Mater. Process. Tech. 113, 189 (2001).10.1016/S0924-0136(01)00606-9Suche in Google Scholar

[32] K. M. Tsai, Appl. Optic. 49, 6149 (2010).10.1364/AO.49.006149Suche in Google Scholar

[33] K. M. Tsai, C. Y. Hsieh and W. C. Lo, J. Mater. Process. Tech., 209, 3469 (2009).10.1016/j.jmatprotec.2008.08.006Suche in Google Scholar

[34] H. E. Lai and P. J. Wang, Appl. Optic. 47, 2017 (2008).10.1364/AO.47.002017Suche in Google Scholar

[35] S. Bäumer, in ‘Handbook of Plastic Optics’ (Press, Morlenbach, John Wiley & Sons, 2011) pp. 1–283.10.1002/9783527635443.ch1Suche in Google Scholar

[36] S. M. Maus and G. J. Galic, Method and apparatus for injection-compression molding & ejecting paired thermoplastic spectacle lens suited for fully automated dip hardcoating. Google Patents (1998).Suche in Google Scholar

[37] K. Saito, T. Nishimoto and H. Asami, Injection compression molding method of a spectacle lens and a spectacle lens produced by using the same. Google Patents (1999).Suche in Google Scholar

[38] D. P. Spector and J. M. Kingsbury, Fabrication of thermoplastic optical components by injection/compression molding. Google Patents (1989).Suche in Google Scholar

[39] W. B. Young, Appl. Math. Model. 29, 955 (2005).10.1016/j.apm.2005.02.004Suche in Google Scholar

[40] W. Michaeli, S. Heßner, F. Klaiber and J. Forster, CIRP. Ann-Manuf. Techn. 56, 545 (2007).10.1016/j.cirp.2007.05.130Suche in Google Scholar

[41] H. Huang, K. Li and S. Li, Polym-Plast Technol. 48, 64 (2009).10.1080/03602550802539742Suche in Google Scholar

[42] C. C. A. Chen and S. C. Kao, Key Eng. Mater. 364–366, 1211 (2008).10.4028/www.scientific.net/KEM.364-366.1211Suche in Google Scholar

[43] J. J. Niewels, Method and apparatus for injection compression molding using active material elements. Google Patents (2011).Suche in Google Scholar

[44] C. C. Chen, F. C. Lee, C. H. Wang and C. H. Yeh, In-mold vibratile injection compression molding method and molding apparatus thereof. Google Patents (2013).Suche in Google Scholar

[45] W. X. Chen and K. Wang, Poly. Mater. Sci. Eng. 29, 169 (2013).Suche in Google Scholar

[46] M. Stricker, G. Pillwein and J. Giessauf, Kunstst. Int. 4, 15 (2009).Suche in Google Scholar

[47] H. B. Daly, K. T. Nguyen, B. Sanschagrin and K.C. Cole, J. Inject. Mold. Technol. 2, 59 (1998).Suche in Google Scholar

[48] N. Zhang, S.Y. Choi and M. D. Gilchrist, Macromol. Mater. Eng. 299, 1362 (2014).10.1002/mame.201300459Suche in Google Scholar

[49] Q. Su, N. Zhang and M. D. Gilchrist, J. Appl. Polym. Sci. 133 (2016).10.1002/app.43902Suche in Google Scholar

[50] M. Chen, D. Yao and B. Kim, Polym-Plast Technol. 40, 491–503 (2001).10.1081/PPT-100002072Suche in Google Scholar

[51] D. Yao, T. E. Kimerling and B. Kim Polym. Eng. Sci. 46, 938 (2006).10.1002/pen.20548Suche in Google Scholar

[52] D. Yao, S. C. Chen and B. H. Kim Adv. Polym. Technol. 27, 233 (2008).10.1002/adv.20136Suche in Google Scholar

[53] G. Zhao, G. Wang, Y. Guan and H. Li, Polym. Adv. Technol. 22, 476–87 (2011).10.1002/pat.1536Suche in Google Scholar

[54] H. V. Fairbanks, Ultrasonics 12, 22 (1974).10.1016/0041-624X(74)90082-1Suche in Google Scholar

[55] J. Sackmann, K. Burlage, C. Gerhardy, B. Memering, S. Liao, et al., Ultrasonics 56, 189 (2015).10.1016/j.ultras.2014.08.007Suche in Google Scholar PubMed

[56] M. Tolunay, P. Dawson and K. Wang, Polym. Eng. Sci. 23, 726 (1983).10.1002/pen.760231307Suche in Google Scholar

[57] A. Sato, H. Ito and K. Koyama, Polym. Eng. Sci. 49, 768 (2009).10.1002/pen.21268Suche in Google Scholar

[58] Y. J. Yang, C. C. Huang, S. K. Lin and J. Tao, J. Polym. Eng. 34, 673 (2014).10.1515/polyeng-2013-0328Suche in Google Scholar

[59] Z. J. Qiu, X. Yang, H. Zheng, S. Gao and F. Z. Fang, Appl. Optic. 54, 8399 (2015).10.1364/AO.54.008399Suche in Google Scholar PubMed

[60] C. Y. Wang and P. J. Wang, Appl. Opt. 53, 2523 (2014).10.1364/AO.53.002523Suche in Google Scholar PubMed

[61] M. D. Chidley, T. Tkaczyk, R. Kester and M. R. Descour, Flow-induced birefringence: the hidden PSF killer in high performance injection-molded plastic optics. In: Biomedical Optics 2006: International Society for Optics and Photonics, 60820E-E-11 (2006).10.1117/12.647274Suche in Google Scholar

[62] J. Yu, F. Z Fang, Z. J. Qiu Appl. Optic. 54, 986–94 (2015).10.1364/AO.54.000986Suche in Google Scholar PubMed

[63] J. Shim, J. Kim, J. Lee, C. Park, E. Cho et al., Opt. Express 23, 19743 (2015).10.1364/OE.23.019743Suche in Google Scholar PubMed

[64] D. Michaelis, P. Schreiber and A. Bräuer, Opt. Lett. 36, 918 (2011).10.1364/OL.36.000918Suche in Google Scholar PubMed

[65] E. Nelson, D. M. C. Claytor, O. M. Lechuga, J. J. Mader, J. Udayasankaran, An overview of freeform optics production, Preceedings of the SPIE 5494 (2004).Suche in Google Scholar

[66] https://www.seroundtable.com/photos/google-glass-melting-17110.html. [Accessed: 23-Jul-2013].Suche in Google Scholar

[67] https://plus.google.com/+DannySullivan/posts/hDjdmazEhz6. [Accessed: 17-Sep-2013].Suche in Google Scholar

[68] http://venturebeat.com/2013/09/18/google-glass-is-shattering-6-months-after-launch-multiple-reports-of-breakage-and-breakdowns/. [Accessed: 18-Sep-2013].Suche in Google Scholar

Received: 2016-5-16
Accepted: 2016-6-21
Published Online: 2016-7-26
Published in Print: 2016-8-1

©2016 THOSS Media & De Gruyter

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2016-0033/html?lang=de
Button zum nach oben scrollen