Home Non-degeneracy of bubble solutions for higher order prescribed curvature problem
Article Open Access

Non-degeneracy of bubble solutions for higher order prescribed curvature problem

  • Yuxia Guo EMAIL logo and Yichen Hu
Published/Copyright: March 3, 2022

Abstract

In this article, we are concerned with the following prescribed curvature problem involving polyharmonic operator on S N :

D m u = K ( y ) u m 1 , u > 0 in S N , u H m ( S N ) ,

where K ( y ) is a positive function, m = 2 N N 2 m is the Sobolev embedding critical exponent, N > 2 m + 2 . D m is the 2 m order differential operator given by

D m = l = 1 m Δ g + 1 4 ( N 2 l ) ( N + 2 l 2 ) ,

where Δ g is the Laplace-Beltrami operator on S N , S N is the unit sphere with Riemann metric g . We first establish two kinds of local Pohozaev identities for polyharmonic operator, then we prove that the positive bubbling solution constructed in the study of Guo and Li is non-degenerate.

MSC 2010: 35B33; 35J91

1 Introduction

We consider the following prescribed curvature problem involving polyharmonic operator on S N

(1.1) D m u = K ( y ) u m 1 , u > 0 in S N , u H m ( S N ) ,

where K ( y ) is a positive function, m = 2 N N 2 m is the critical exponent of Sobolev embedding, N > 2 m + 2 , D m is a 2 m order differential operator given by

D m = l = 1 m Δ g + 1 4 ( N 2 l ) ( N + 2 l 2 ) ,

where Δ g is the Laplace-Beltrami operator on S N , S N is the unit sphere with Riemann metric g .

In the case of m = 1 , problem (1.1) is reduced to the following prescribed curvature problem:

(1.2) Δ S n u + N ( N 2 ) 2 u K ( y ) u N + 2 N 2 = 0 , u > 0 , on S N .

The so-called prescribed curvature problem is to find a conformal invariant metric g such that the curvature is K ( y ) .

By using the stereo-graphic projection, problem (1.2) is reduced to the following elliptic problem in R N :

(1.3) Δ u = K ( y ) u N + 2 N 2 , u > 0 , in R N , u D 1 , 2 ( R N ) .

Because of its geometry background, problem (1.3) has been extensively studied in the last few decades. It is known that (see [1]) (1.3) does not always admit a solution. Hence, we are more interested in the sufficient condition on the curvature function K ( y ) , under which problem (1.3) admits a solution. Indeed, there have been a lot of existence results obtained in the literature, see, for example, [2,3,4, 5,6,7] and references therein. In particular, we know that any solution of (1.3) is radially symmetric if there is an r 0 > 0 such that K ( y ) is non-increasing in ( 0 , r 0 ] and non-decreasing in [ r 0 , + ) (see [8]). It is natural to ask whether or not there are non-radial symmetric solutions to (1.3). This question was answered in the paper of [9].

In general case of m 1 , problem (1.1) also has attracted wide attention due to its geometry roots and various applications in physics during the last few decades. For instance, when m = 2 , problem (1.1) is related to the Paneitz operator, which was introduced by Paneitz [10] for smooth four-dimensional Riemannian manifolds and was generalized by Branson [11] to smooth N-dimensional Riemannian manifolds. For various existence results to problems involving polyharmonic operator and other related problems, we refer the reader to the papers [12,13,14, 15,16,17, 18,19,20, 21,22,23] and references therein. It is evident to see from these papers that compared to the problems with Laplace operator (i.e., m = 1 ), the problems involving polyharmonic operator present new and challenging features which make the problem getting more complicated and difficult.

This article is concerning on the non-degeneracy of bubbling solutions for problem (1.1). It is also known that by using the stereographic projection, the prescribed scalar curvature problem for polyharmonic operator on S N can be reduced to the following problem in R N :

(1.4) ( Δ ) m u = K ( y ) u m 1 , u > 0 , in R N , u D m , 2 ( R N ) ,

where m = 2 N N 2 m is the Sobolev critical exponent of the embedding from D m , 2 ( R N ) onto L p ( R N ) , and D m , 2 ( R N ) is the completion of C 0 ( R N ) with respect to the norm induced by the scalar product:

( u , v ) = R N Δ m 2 u Δ m 2 v , if m is even , R N Δ m 1 2 u Δ m 1 2 v , if m is odd .

In particular, we are interested in the existence of non-radial solutions for (1.4). This was done in [24], where infinitely many non-radial bubble solutions were constructed under the following assumption on K ( y ) :

( K ) There are r 0 > 0 and c 0 > 0 , such that

(1.5) K ( r ) = K ( r 0 ) c 0 ( r r 0 ) 2 + O ( r r 0 3 ) , r ( r 0 δ , r 0 + δ ) .

Without loss of generality, we may assume that K ( r 0 ) = 1 .

The main purpose of this article is to discuss the non-degeneracy of positive bubble solution constructed in [24]. We would like to mention that the non-degeneracy of the solution is very important for the further construction of new solutions for problem (1.1). For example, we may ask whether we can obtain the similar result as in [24] without the symmetry assumptions on the curvature function k ( y ) . To answer this question, among any other things, one main task is to get a better understanding of the corresponding linearized problem around the approximation solution. That is, the non-degeneracy of the linearized operator. Another application in our mind is to construct new-type bubble solutions for (1.1). We will consider these problems in our later work.

Before the statement of the main results, let us briefly introduce the bubble solutions constructed in [25].

It is known (see [9,26]) that a family of positive solutions to the following limit problem:

(1.6) ( Δ ) m u = u m 1 , u > 0 in R N , u D m , 2 ( R N )

are given by

(1.7) U x , μ ( y ) = C N , m μ N 2 m 2 ( 1 + μ 2 y x 2 ) N 2 m 2 , x R N , μ > 0 ,

where C N , m is a constant depending on N , m .

Let k be an integer number and we consider the vertices of a regular polygon with k edges in the ( y 1 , y 2 ) -plane given by

x j = r cos 2 ( j 1 ) π k , r sin 2 ( j 1 ) π k , 0 , j = 1 , , k ,

where 0 denotes the zero vector in R N 2 and r ( r 0 δ , r 0 + δ ) .

For any point y R N , we set y = ( y , y ) , y R 2 , y R N 2 . Define

H s = u : u is even in y h , h = 2 , , N , u ( r cos θ , r sin , y ) = u r cos θ + 2 π j k , r sin θ + 2 π j k , y ,

and set

W r , μ ( y ) = j = 1 k U x j , μ ( y ) .

Furthermore, for a function u H s D m , 2 ( R N ) , we introduce the norm u as follows:

u = sup y R N u ( y ) j = 1 k μ N 2 m 2 ( 1 + μ y x j ) N 2 m 2 + τ 1 ,

where τ is any fixed number in N 2 m 2 N 2 m , 1 + θ , θ > 0 is a small constant. The result obtained in [24] states the following.

Theorem A

Suppose that K ( r ) satisfies (K) and N > 2 m + 2 . Then there is an integer k 0 > 0 , such that for any integer k k 0 , (1.4) has a solution u k of the form

u k = W r k , μ k ( y ) + ω k ,

where ω k H s D m , 2 ( R N ) , and as k + , r k r 0 = O 1 μ k 1 + σ , μ k k N 2 m N 2 m 2 ,

ω k = O 1 μ k 1 + σ

for some σ > 0 .

Let L k be the linear operator defined by

L k ξ = ( Δ ) m ξ ( m 1 ) K ( y ) u k m 2 ξ .

The main result of the present article is the following.

Theorem 1.1

Suppose that K ( y ) satisfies ( K ), K ( y ) C 3 ( B ϑ ( r 0 ) ) for some ϑ > 0 , and K ( r ) L ( R N ) . Then If N > 2 m + 2 , there exists K 0 > 0 , such that for any integer k > K 0 , the positive bubble solution u k obtained in Theorem A is non-degenerate in the sense that if ξ H s D m , 2 ( R N ) is a solution of L k ξ = 0 , then ξ = 0 .

As a direct consequence of Theorem 1.1, we have

Theorem 1.2

Under the assumption in Theorem 1.1. There exists K 0 > 0 , such that for any integer k > K 0 , the bubble solution of the prescribed curvature problem (1.1) is non-degenerate in the sense that if ξ H s D m , 2 ( R N ) is a solution of L k ξ = 0 , then ξ = 0 .

For the proof of Theorem 1.1, we shall proceed contrary arguments by using the local Pohozaev identities for polyharmonic equations. However, different from the case of m = 1 , the local Pohozaev identities will get more complex and there are even infinite many items (as m is large) to be dealt with. As a better understanding of different Pohozaev identities for polyharmonic equations is very important for us, some extra techniques and more detailed calculation are needed. We believe that these Pohozaev identities for polyharmonic operator can be applied for more elliptic problems involving polyharmonic operator.

The article is organized as follows. In Section 2, by delicate computations, we establish two types of local Pohozaev identities for polyharmonic. Section 3 is devoted to the proof of Theorem 1.1. For this purpose, we will first establish a finite estimate for the bubble solution u k by using the local Pohozaev identities, then we proceed a contrary argument to prove its non-degeneracy. Some essential estimates are attached in Appendices.

2 Local Pohozaev identities

In this section, we first establish the local Pohozaev identities for polyharmonic operator. Let

(2.1) ( Δ ) m u = K ( y ) u m 1

and

(2.2) ( Δ ) m ξ = ( m 1 ) K ( y ) u m 2 ξ .

Assume that Ω is a bounded domain in R N with smooth boundary Ω . We have the following identities.

Lemma 2.1

If m = 2 l , l N + , then

(2.3) Ω u m 1 ξ K ( y ) y s = Ω K ( y ) u m 1 ξ ν s Ω Δ l u Δ l ξ ν s + i = 1 l Ω Δ m i u 2 Δ i 1 ξ y s ν i = 1 l Ω Δ m i u ν Δ i 1 ξ y s + i = 1 l Ω Δ m i ξ 2 Δ i 1 u y s ν i = 1 l Ω Δ m i ξ ν Δ i 1 u y s

and

(2.4) Ω u m 1 ξ K ( y ) , y x 0 = Ω K ( y ) u m 1 ξ ν , y x 0 Ω Δ l u Δ l ξ ν , y x 0 i = 1 l Ω Δ m i u ν Δ i 1 ξ , y x 0 + i = 1 l Ω Δ m i u Δ i 1 ξ , y x 0 ν i = 1 l Ω Δ m i ξ ν Δ i 1 u , y x 0 + i = 1 l Ω Δ m i ξ Δ i 1 u , y x 0 ν + N 2 m 2 i = 1 l Ω Δ m i u Δ i 1 ξ ν + Ω Δ m i ξ Δ i 1 u ν Ω Δ m i u ν Δ i 1 ξ Ω Δ m i ξ ν Δ i 1 u .

Proof

Proof of (2.3). Multiplying the two equations (2.1) and (2.2) by ξ y s and u y s , respectively, and subtracting the obtained two equations, we have

(2.5) Ω Δ m u ξ y s + Δ m ξ u y s = Ω K ( y ) u m 1 ξ y s + ( m 1 ) u m 2 ξ u y s .

Similarly, we have

(2.6) Ω K ( y ) u m 1 ξ y s + ( m 1 ) u m 2 ξ u y s = Ω K ( y ) ( u m 1 ξ ) y s = Ω u m 1 ξ K ( y ) y s + Ω K ( y ) u m 1 ξ ν s .

A direct computation shows that

(2.7) Ω Δ m u ξ y s + Δ m ξ u y s = Ω Δ m 1 u Δ ξ y s + Δ m 1 ξ Δ u y s Ω Δ m 1 u 2 ξ ν y s + Ω Δ m 1 u ν ξ y s Ω Δ m 1 ξ 2 u ν y s + Ω Δ m 1 ξ ν u y s = Ω Δ l u Δ l ξ y s + Δ l ξ Δ l u y s i = 1 l Ω Δ m i u 2 Δ i 1 ξ y s ν + i = 1 l Ω Δ m i u ν Δ i 1 ξ y s i = 1 l Ω Δ m i ξ 2 Δ i 1 u y s ν + i = 1 l Ω Δ m i ξ ν Δ i 1 u y s = Ω Δ l u Δ l ξ ν s i = 1 l Ω Δ m i u 2 Δ i 1 ξ y s ν + i = 1 l Ω Δ m i u ν Δ i 1 ξ y s i = 1 l Ω Δ m i ξ 2 Δ i 1 u y s ν + i = 1 l Ω Δ m i ξ ν Δ i 1 u y s .

This completes the proof of (2.3).

Proof of (2.4). For this formula, we multiply the two equations (2.1) and (2.2) by ξ , y x 0 and u , y x 0 , respectively, and again subtracting the two resulted equations, we have

(2.8) Ω ( Δ m u ξ , y x 0 + Δ m ξ u , y x 0 ) = Ω K ( y ) ( u m 1 ξ , y x 0 + ( m 1 ) u m 2 ξ ξ , y x 0 ) .

On the other hand, we have

(2.9) Ω K ( y ) ( u m 1 ξ , y x 0 + ( m 1 ) u m 2 ξ ξ , y x 0 ) = Ω K ( y ) ( u m 1 ξ ) , y x 0 = Ω K ( y ) u m 1 ξ ν , y x 0 Ω u m 1 ξ K ( y ) , y x 0 N Ω K ( y ) u m 1 ξ ,

where ν is the outward unit normal of Ω at y Ω . Moreover,

(2.10) Ω ( Δ m u ξ , y x 0 + Δ m ξ u , y x 0 ) = Ω ( Δ l u Δ l ξ , y x 0 + Δ l ξ Δ l u , y x 0 ) i = 1 l Ω Δ m i u ν Δ i 1 ξ , y x 0 + i = 1 l Ω Δ m i u Δ i 1 ξ , y x 0 ν i = 1 l Ω Δ m i ξ ν Δ i 1 u , y x 0 + i = 1 l Ω Δ m i ξ Δ i 1 u , y x 0 ν

and

(2.11) Ω Δ l ξ Δ l u , y x 0 + Ω Δ l u Δ l ξ , y x 0 = Ω Δ l ξ ( Δ l 1 Δ u , y x 0 + 2 Δ u ) + Ω Δ l u ( Δ l 1 Δ ξ , y x 0 + 2 Δ ξ ) = Ω Δ l ξ Δ l 1 Δ u , y x 0 + Ω Δ l u Δ l 1 Δ ξ , y x 0 + 2 Ω Δ l ξ Δ l u = Ω Δ l ξ Δ l u , y x 0 + Ω Δ l u Δ l ξ , y x 0 + 4 l Ω Δ l ξ Δ l u = Ω Δ l ξ Δ l u ν , y x 0 + ( 4 l N ) Ω Δ l ξ Δ l u .

We also have

(2.12) m Ω K ( y ) u m 1 ξ = Ω ( Δ m u ξ + Δ m ξ u ) = 2 Ω Δ l ξ Δ l u + i = 1 l Ω Δ m i u Δ i 1 ξ ν + Ω Δ m i ξ Δ i 1 u ν Ω Δ m i u ν Δ i 1 ξ Ω Δ m i ξ ν Δ i 1 u ,

which gives

(2.13) Ω Δ l u Δ l ξ = m 2 Ω K ( y ) u m 1 ξ 1 2 i = 1 l Ω Δ m i u Δ i 1 ξ ν + Ω Δ m i ξ Δ i 1 u ν Ω Δ m i u ν Δ i 1 ξ Ω Δ m i ξ ν Δ i 1 u .

Thus, the result follows.□

Lemma 2.2

If m = 2 l + 1 , l N + , then

(2.14) Ω u m 1 ξ K ( y ) y s = Ω K ( y ) u m 1 ξ ν s Ω Δ l u , Δ l ξ ν s i = 1 l Ω Δ m i u 2 Δ i 1 ξ y s ν + i = 1 l + 1 Ω Δ m i u ν Δ i 1 ξ y s i = 1 l Ω Δ m i ξ 2 Δ i 1 u y s ν + i = 1 l + 1 Ω Δ m i ξ ν Δ i 1 u y s

and

(2.15) Ω u m 1 ξ K ( y ) , y x 0 = Ω K ( y ) u m 1 ξ ν , y x 0 Ω Δ l u , Δ l ξ ν , y x 0 + i = 1 l + 1 Ω Δ m i u ν Δ i 1 ξ , y x 0 i = 1 l Ω Δ m i u Δ i 1 ξ , y x 0 ν + i = 1 l + 1 Ω Δ m i ξ ν Δ i 1 u , y x 0 i = 1 l Ω Δ m i ξ Δ i 1 u , y x 0 ν + N 2 m 2 i = 1 l Ω Δ m i u Δ i 1 ξ ν Ω Δ m i ξ Δ i 1 u ν + N 2 m 2 i = 1 l + 1 Ω Δ m i u ν Δ i 1 ξ + Ω Δ m i ξ ν Δ i 1 u .

Proof

Proof of (2.14). Using the similar arguments as in the proof of (2.3), we have

(2.16) Ω Δ m u ξ y s Δ m ξ u y s = Ω K ( y ) u m 1 ξ y s + ( m 1 ) u m 2 ξ u y s .

And

(2.17) Ω K ( y ) u m 1 ξ y s + ( m 1 ) u m 2 ξ u y s = Ω K ( y ) ( u m 1 ξ ) y s = Ω u m 1 ξ K ( y ) y s + Ω K ( y ) u m 1 ξ ν s .

Further computation leads to

(2.18) Ω Δ m u ξ y s Δ m ξ u y s = Ω Δ l + 1 u Δ l ξ y s Δ l + 1 ξ Δ l u y s + i = 1 l Ω Δ m i u 2 Δ i 1 ξ y s ν i = 1 l Ω Δ m i u ν Δ i 1 ξ y s + i = 1 l Ω Δ m i ξ 2 Δ i 1 u y s ν i = 1 l Ω Δ m i ξ ν Δ i 1 u y s = Ω Δ l u , Δ l ξ y s + Ω Δ l ξ , Δ l u y s + i = 1 l Ω Δ m i u 2 Δ i 1 ξ y s ν i = 1 l + 1 Ω Δ m i u ν Δ i 1 ξ y s + i = 1 l Ω Δ m i ξ 2 Δ i 1 u y s ν i = 1 l + 1 Ω Δ m i ξ ν Δ i 1 u y s = Ω Δ l u , Δ l ξ ν s i = 1 l Ω Δ m i u 2 Δ i 1 ξ y s ν + i = 1 l Ω Δ m i u ν Δ i 1 ξ y s i = 1 l Ω Δ m i ξ 2 Δ i 1 u y s ν + i = 1 l Ω Δ m i ξ ν Δ i 1 u y s .

And (2.14) is proved.

Proof of (2.15). We have

(2.19) Ω ( Δ m u ξ , y x 0 Δ m ξ u , y x 0 ) = Ω K ( y ) ( u m 1 ξ , y x 0 + ( m 1 ) u m 2 ξ ξ , y x 0 ) .

It is also easy to check that

(2.20) Ω K ( y ) ( u m 1 ξ , y x 0 + ( m 1 ) u m 2 ξ ξ , y x 0 ) = Ω K ( y ) ( u m 1 ξ ) , y x 0 = Ω K ( y ) u m 1 ν , y x 0 Ω u m 1 ξ K ( y ) , y x 0 N Ω K ( y ) u m 1 ξ ,

where ν is the outward unit normal of Ω at y Ω . Moreover,

(2.21) Ω ( Δ m u ξ , y x 0 Δ m ξ u , y x 0 ) = Ω ( Δ l + 1 u Δ l ξ , y x 0 + Δ l + 1 ξ Δ l u , y x 0 ) + i = 1 l Ω Δ m i u ν Δ i 1 ξ , y x 0 i = 1 l Ω Δ m i u Δ i 1 ξ , y x 0 ν + i = 1 l Ω Δ m i ξ ν Δ i 1 u , y x 0 i = 1 l Ω Δ m i ξ Δ i 1 u , y x 0 ν = Ω Δ l u , Δ l ξ , y x 0 + Ω Δ l ξ , Δ l u , y x 0 + i = 1 l Ω Δ m i u ν Δ i 1 ξ , y x 0 i = 1 l + 1 Ω Δ m i u Δ i 1 ξ , y x 0 ν + i = 1 l Ω Δ m i ξ ν Δ i 1 u , y x 0 i = 1 l + 1 Ω Δ m i ξ Δ i 1 u , y x 0 ν

and

(2.22) Ω Δ l u , Δ l ξ , y x 0 + Ω Δ l ξ , Δ l u , y x 0 = Ω Δ l u , Δ l ξ , y x 0 + Ω Δ l ξ , Δ l u , y x 0 + 4 l Ω Δ l u , Δ l ξ = Ω Δ l u , Δ l ξ ν , y x 0 + ( 4 l + 2 N ) Ω Δ l u , Δ l ξ .

On the other hand, we have

(2.23) m Ω K ( y ) u m 1 ξ = Ω ( Δ m u ξ + Δ m ξ u ) = 2 Ω Δ l u , Δ l ξ i = 1 l Ω Δ m i u Δ i 1 ξ ν + Ω Δ m i ξ Δ i 1 u ν + i = 1 l + 1 Ω Δ m i u ν Δ i 1 ξ + Ω Δ m i ξ ν Δ i 1 u ,

which gives

(2.24) Ω Δ l u , Δ l ξ = m 2 Ω K ( y ) u m 1 ξ 1 2 i = 1 l Ω Δ m i u Δ i 1 ξ ν + Ω Δ m j ξ Δ i 1 u ν + i = 1 l + 1 Ω Δ m i u ν Δ i 1 ξ + Ω Δ m i ξ ν Δ i 1 u .

Thus, the result follows.□

3 Non-degeneracy of the bubble solutions

In this section, we first use Lemmas 2.1 and 2.2 to establish a fine estimate on the k -bubble solution u k obtained in Theorem A. Then we prove a non-degeneracy result by using a contradiction argument. We introduce following norms by:

u = sup y R N u ( y ) j = 1 k μ k N 2 m 2 ( 1 + μ k y x k , j ) N 2 m 2 + τ 1

and

u = sup y R N u ( y ) j = 1 k μ k N + 2 m 2 ( 1 + μ k y x k , j ) N + 2 m 2 + τ 1 ,

where x k , j = r k cos 2 ( i 1 ) π k , r k sin 2 ( i 1 ) π k , 0 , and τ is any fixed number in N 2 m 2 N 2 m , 1 + θ , θ > 0 is a small constant. Noting that μ k k N 2 m N 2 m 2 and the choice of x k , j and τ , we find

j = 2 k 1 ( μ k x k , 1 x k , j ) τ C k τ μ k τ j = 1 k 1 j τ C 1 k μ k τ C .

It is known that (see [15]), λ 1 = 1 , λ 2 = λ 3 = = λ N + 2 are the eigenvalues of the following eigenvalue problem:

( Δ ) m v = λ U x i , μ m 2 v , for v D m , 2 ( R N ) ,

and the corresponding linear independent eigenvectors v 1 , v 2 , , v N + 2 are given by

v 1 = U x i , μ , v j + 1 = U x i , μ y j , j = 1 , 2 , , N , v N + 2 = x U x i , μ + N 2 m 2 U x i , μ .

Let

Ω j = y = ( y , y ) R 2 × R N : ( y , 0 ) y , x k , j x k , j cos π k .

We define the linear operator L k by

(3.1) L k ξ = ( Δ ) m ξ ( m 1 ) K ( y ) u k m 2 ξ .

Lemma 3.1

There exists a constant C > 0 such that for all y R N ,

u k ( y ) C j = 1 k μ k N 2 m 2 ( 1 + μ k y x k , j ) N 2 m .

Proof

For convenience, we set u ^ k = μ k N 2 m 2 u k ( μ k 1 y ) , then

( Δ ) m u ^ k = K ( μ k 1 y ) u ^ k m 1 .

Using Green’s formula, we know that

u ^ k ( y ) = R N C N , m z y N 2 m K ( μ k 1 z ) u ^ k m 1 ( z ) d z .

Recall that the bubble solution u k = j = 1 k U x j , μ k + ω k with ω k = O 1 μ k 1 + σ for some σ > 0 , we find

u ^ k ( y ) C R N 1 z y N 2 m u ^ k m 1 ( z ) d z C R N 1 z y N 2 m j = 1 k 1 ( 1 + z x ^ k , j ) N 2 m 2 + τ m 1 d z C R N 1 z y N 2 m j = 1 k 1 ( 1 + z x ^ k , j ) N + 2 m 2 + τ + 4 m ( τ τ 1 ) N 2 m j = 1 k 1 ( 1 + z x ^ k , j ) τ 1 4 m N 2 m d z C R N 1 z y N 2 m j = 1 k 1 ( 1 + z x ^ k , j ) N + 2 m 2 + τ + 4 m ( τ τ 1 ) N 2 m d z C j = 1 k 1 ( 1 + y x ^ k , j ) N 2 m 2 + τ + 4 m ( τ τ 1 ) N 2 m ,

where x ^ k , j = μ k x k , j and τ 1 N 2 m 2 N 2 m , τ . Noting that

N 2 m 2 + τ + 4 m ( τ τ 1 ) N 2 m > N 2 m 2 + τ ,

we can choose τ 1 such that N 2 m 2 τ 4 m ( τ τ 1 ) N 2 m is not an integer.

Let η = 4 m ( τ τ 1 ) N 2 m and l = N 2 m 2 τ 4 m ( τ τ 1 ) N 2 m , then we have

u ^ k ( y ) C j = 1 k 1 ( 1 + y x ^ k , j ) N 2 m 2 + τ + η .

Continuing this process, we have

u ^ k ( y ) C j = 1 k 1 ( 1 + y x ^ k , j ) N 2 m 2 + τ + η + 4 m ( τ + η τ 2 ) N 2 m ,

where τ 2 N 2 m 2 N 2 m , τ + η . We can choose τ 2 such that 4 m ( τ + η τ 2 ) N 2 m = η , then we have

u ^ k ( y ) C j = 1 k 1 ( 1 + y x ^ k , j ) N 2 m 2 + τ + 2 η .

Repeating this process again, we have

u ^ k ( y ) C j = 1 k 1 ( 1 + y x ^ k , j ) N 2 m 2 + τ + l η .

So

u ^ k ( y ) C R N 1 z y N 2 m j = 1 k 1 ( 1 + z x ^ k , j ) N + 2 m 2 + τ + l η + η d z C j = 1 k 1 ( 1 + y x ^ k , j ) N 2 m .

And the desired result follows immediately.□

Lemma 3.2

There exists a constant C > 0 such that for all y R N and r = 1 , , 2 m 1 ,

( ) r u k ( ) y 1 i 1 ( ) y N i N ( y ) C j = 1 k μ k N 2 m 2 + j ( 1 + μ k y x k , j ) N 2 m + j ,

where s = 1 N i s = r .

Proof

Let u ^ k = μ N 2 m 2 u k ( μ k 1 y ) , then

( Δ ) m u ^ k = K ( μ k 1 y ) u ^ k m 1 .

We have

u ^ k ( y ) = R N 1 z y N 2 m K ( μ k 1 z ) u ^ k m 1 ( z ) d z .

Hence,

( ) r u ^ k ( ) y 1 i 1 ( ) y N i N ( y ) = C R N ( ) r ( ) y 1 i 1 ( ) y N i N 1 z y N 2 m K ( μ k 1 z ) u ^ k m 1 ( z ) d z C R N 1 z y N 2 m + j K ( μ k 1 z ) u ^ k m 1 ( z ) d z .

Similar to the proof of Lemma 3.1, we can prove

( ) r u ^ k ( ) y 1 i 1 ( ) y N i N ( y ) C j = 1 k 1 ( 1 + y x ^ k , j ) N 2 m + j .

Therefore,

( ) j u k ( ) y 1 i 1 ( ) y N i N ( y ) C j = 1 k μ k N 2 m 2 + j ( 1 + μ k y x k , j ) N 2 m + j .

In the following, we shall prove Theorem 1.1 by using contradiction arguments. Suppose that there are k n + , satisfying

(3.2) L k n ξ n = 0 ,

but ξ n 0 . Without loss of generality, we may assume ξ n = 1 and obtain the contradictions through the following steps. Set

(3.3) ξ ^ n ( y ) = μ k n N 2 m 2 ξ n ( μ k n 1 y + x k n , 1 ) .

Lemma 3.3

It holds

(3.4) ξ ^ n b 0 ψ 0 + b 1 ψ 1 ,

uniformly in C m ( B R ( 0 ) ) for any R > 0 , where b 0 and b 1 are some constants,

ψ 0 = U 0 , μ μ μ = 1 , ψ i = U 0 , 1 y i , i = 1 , , N .

Proof

In view of ξ ^ n C , we may assume that ξ ^ n ξ in C loc m ( R N ) . Then ξ satisfies

(3.5) ( Δ ) m ξ = ( m 1 ) U 0 , 1 m 1 ξ , in R N ,

which gives

(3.6) ξ = i = 0 N b i ψ i .

Since ξ n is even in y i , i = 2 , , N , it holds b i = 0 , i = 2 , , N .□

We decompose

ξ n ( y ) = b 0 , n μ k n j = 1 k n U x k n , j , μ k n μ k n + b 1 , n μ k n 1 j = 1 k n U x k n , j , μ k n r + ξ n ,

where ξ n satisfies

R N U x k n , j , μ k n m 2 U x k n , j , μ k n μ k n ξ n = R N U x k n , j , μ k n m 2 U x k n , j , μ k n r ξ n = 0 .

It follows from Lemma 2.3 that b 0 , n and b 1 , n are bounded.

Lemma 3.4

It holds

(3.7) ξ n C μ k n 1 σ ,

where σ > 0 is a small constant.

Proof

Since L k n ξ n = 0 . We can deduce that

L k n ξ n ( Δ ) m ξ n ( m 1 ) K ( y ) u k n m 2 ξ n = ( m 1 ) ( K ( y ) 1 ) u k n m 2 j = 1 k n b 0 , n μ k n U x k n , j , μ k n μ k n + b 1 , n μ k n 1 U x k n , j , μ k n r ( m 1 ) j = 1 k n ( u k n m 2 U x k n , j , μ k n m 2 ) b 0 , n μ k n U x k n , j , μ k n μ k n + b 1 , n μ k n 1 U x k n , j , μ k n r .

Then we can prove

(3.8) ( K ( y ) 1 ) u k n m 2 j = 1 k n b 0 , n μ k n U x k n , j , μ k n μ k n + b 1 , n μ k n 1 U x k n , j , μ k n r ( K ( y ) 1 ) j = 1 k n U x k n , j , μ k n m 1 C μ k n 1 σ .

In fact, without loss of generality, we may assume y Ω 1 , then we compute

( K ( y ) 1 ) j = 1 k n U x k n , j , μ k n m 1 C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m + C j = 2 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N 2 m N + 2 m N 2 m I 1 + I 2 .

Since N 2 m 2 τ N 2 m N + 2 m > 1 , we have

I 2 C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ k n μ k n N + 2 m 2 τ C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ 1 μ k n 2 N 2 m N + 2 m 2 τ C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ μ k n 1 σ .

Now, we turn to consider the first term I 1 . We split the slice Ω 1 into two parts, namely,

J 1 { y Ω 1 y r 0 δ } , J 2 { y Ω 1 y r 0 δ } ,

where δ > 0 is a fixed constant.

For the region J 1 , we have

y x k n , 1 y x k n , 1 y r 0 r 0 x k n , 1 1 2 δ .

Hence,

I 1 C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ 1 μ k n N + 2 m τ C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ μ k n 1 σ .

For the region J 2 , we have

K ( y ) 1 C y r 0 2 C ( y x k n , 1 + x k n , 1 r 0 ) 2 C ( y x k n , 1 2 + μ k n 2 σ ) .

Thus, for σ > 0 small such that N + 2 m 2 τ 1 σ 2 m + 1 2 τ σ > 0 , we have

I 1 C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ y x k n , 1 2 + μ 2 σ ( 1 + μ k n y x k n , 1 ) N + 2 m 2 τ C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ ( μ k n N + 2 m 2 τ + μ k n 2 σ ) C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ μ k n 1 σ .

In the following, for simplicity, without loss of generality, we assume y Ω 1 .

Case 1. N 6 m : We have

j = 1 k n U x k n , j , μ k n m 2 U x k n , 1 , μ k n m 2 b 0 , n μ k n U x k n , j , μ k n μ k n + b 1 , n μ k n 1 U x k n , j , μ k n r C U x k n , 1 , μ k n m 1 j = 2 k n U x k n , j , μ k n C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ j = 2 k n 1 ( μ k n y x k n , j ) N + 2 m 2 τ C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ μ k n 1 σ .

Case 2. N < 6 m : We have

j = 1 k n U x k n , j , μ k n m 2 U x k n , 1 , μ k n m 2 b 0 , n μ k n U x k n , j , μ k n μ k n + b 1 , n μ k n 1 U x k n , j , μ k n r C U x k n , 1 , μ k n m 2 j = 2 k n U x k n , j , μ k n + U x k n , 1 , μ k n j = 2 k n U x k n , j , μ k n m 2 C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ j = 2 k n 1 ( μ k n y x k n , j ) N + 2 m 2 τ + μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ j = 2 k n 1 ( μ k n y x k n , j ) ( N 2 m ) m + N 2 τ 4 m 4 m N 2 m C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ μ k n 1 σ .

So we have proved

(3.9) j = 1 k n U x k n , j , μ k n m 2 U x k n , 1 , μ k n m 2 b 0 , n μ k n U x k n , j , μ k n μ k n + b 1 , n μ k n 1 U x k n , j , μ k n r C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ μ k n 1 σ .

On the other hand, we have

(3.10) j = 2 k n i = 1 k n U x k n , i , μ k n m 2 U x k n k n , j , μ k n m 2 b 0 , n μ k n U x k n , j , μ k n μ k n + b 1 , n μ k n 1 U x k n , j , μ k n r C j = 2 k n U x k n , 1 , μ k n m 2 + i = 2 k n U x k n , i , μ k n m 2 U x k n , j , μ k n C j = 2 k n U x k n , 1 , μ k n m 2 + C μ k n 2 m ( 1 + μ k n y x k n , 1 ) 4 m 4 m τ N 2 m U x k n , j , μ k n C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ μ k n 1 σ .

Combining (3.9) and (3.10), we obtained

j = 1 k n i = 1 k n U x k n , i , μ k n m 2 U x k n , j , μ k n m 2 b 0 , n μ k n U x k n , j , μ k n μ k n + b 1 , n μ k n 1 U x k n , j , μ k n r μ k n 1 σ .

Moreover, for N 6 m , we have

j = 1 k n i = 1 k n U x k n , i , μ k n m 2 u k n m 2 b 0 , n μ k n U x k n , j , μ k n μ k n + b 1 , n μ k n 1 U x k n , j , μ k n r

C j = 1 k n i = 1 k n U x k n , i , μ k n m 2 u k n m 2 U x k n , j , μ k n C j = 1 k n i = 1 k n U x k n , i , μ k n m 3 ω k n U x k n , j , μ k n C i = 1 k n U x k n , i , μ k n m 2 ω k n C ω k n C μ k n 1 σ .

The penultimate term follows the fact that

j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N 2 m 2 4 m N 2 m j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) ( N 2 m η ) 4 m N 2 m + N 2 m 2 + τ η = C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N + 2 m 2 + τ + 2 m η N + 2 m N 2 m C j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N + 2 m 2 + τ ,

where η = N 2 m 2 N 2 m and the last inequality follows the fact that 2 m η N + 2 m N 2 m > 0 .

For N < 6 m , we can also prove

(3.11) j = 1 k n i = 1 k n U x k n , i , μ k n m 2 u k n m 2 b 0 , n μ k n U x k n , j , μ k n μ k n + b 1 , n μ k n 1 U x k n , j , μ k n r C i = 1 k n U x k n , i , μ k n m 2 ω k n + i = 1 k n U x k n , i , μ k n ( ω k n ) m 2 C ( ω k n + ω k n m 2 ) C μ k n 1 σ .

In fact, noting that

N 2 m 2 N 2 m 2 N 2 m N + 2 m N 2 m + τ 4 m N 2 m τ N 2 m 2 N 2 m 2 N 2 m N + 2 m N 2 m + N 2 m 2 N 2 m 4 m N 2 m N 2 m 2 N 2 m = N 2 m 2 2 N 2 m 2 N 2 m > 0 ,

the inequality (3.11) follows from

j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N 2 m 2 4 m N 2 m j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ C j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N + 2 m 2 + τ ,

and

j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N 2 m 2 j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ 4 m N 2 m C μ k n N + 2 m 2 ( 1 + μ k n y x k n , 1 ) N N 2 m 2 N 2 m N + 2 m N 2 m + τ 4 m N 2 m C j = 1 k n μ k n N + 2 m 2 ( 1 + μ k n y x k n , j ) N + 2 m 2 + τ .

As a consequence, we have proved

j = 1 k n i = 1 k n U x k n , i , μ k n m 2 u k n m 2 b 0 , n μ k n U x k n , j , μ k n μ k n + b 1 , n μ k n 1 U x k n , j , μ k n r C μ k n 1 σ .

On the other hand, from

R N U x k n , j , μ k n m 2 U x k n , j , μ k n μ k n ξ n = R N U x k n , j , μ k n m 2 U x k n , j , μ k n r ξ n = 0

and Lemma 3.1, we can see that there exists ρ > 0 , such that

L k n ξ n ρ ξ n .

Thus, the result follows.□

Lemma 3.5

There exists a constant C > 0 such that for all y R N and r = 1 , , 2 m 1 ,

( ) r ξ n ( ) y 1 i 1 ( ) y N i N ( y ) C j = 1 k n μ k n N 2 m 2 + j ( 1 + μ k n y x k , j ) N 2 m 2 + τ + j μ k n 1 σ ,

where s = 1 N i s = r .

Proof

Since

L k n ξ n ( Δ ) m ξ n ( m 1 ) K ( y ) u k n m 2 ξ n ,

we have

( ) r ξ n ( ) y 1 i 1 ( ) y N i N ( z ) = C R N ( ) r ( ) y 1 i 1 ( ) y N i N 1 z y N 2 m ( ( m 1 ) K ( z ) u k n m 2 ξ n + L k n ξ n ) d z C R N 1 z y N 2 m + j ( m 1 ) K ( z ) u k n m 2 ξ n + L k n ξ n d z .

By using the fact L k n ξ n C μ k n 1 σ , we obtain

(3.12) R N 1 z y N 2 m + j L k n ξ n d z

C μ k n 1 σ R N 1 z y N 2 m + j j = 1 k n μ k n N + 2 m 2 ( 1 + μ k n z x k , j ) N + 2 m 2 + τ d z C j = 1 k n μ k n N 2 m 2 + j ( 1 + μ k n y x k , j ) N 2 m 2 + τ + j μ k n 1 σ .

Note that ξ n C μ k n 1 σ , we have

(3.13) R N 1 z y N 2 m + j ( m 1 ) K ( y ) u k n m 2 ξ n d z C μ k n 1 σ R N 1 z y N 2 m + j j = 1 k n μ k n N 2 m 2 ( 1 + μ k n z x k , j ) N 2 m m 2 j = 1 k n μ k n N 2 m 2 ( 1 + μ k n z x k , j ) N 2 m 2 + τ d z C μ k n 1 σ j = 1 N Ω j 1 z y N 2 m + j μ k n N + 2 m 2 ( 1 + μ k n z x k , j ) N + 2 m 2 + 2 m + τ η ( m 1 ) d z C μ k n 1 σ j = 1 N 1 z y N 2 m + j μ k n N 2 m 2 ( 1 + μ k n y x k , j ) N + 2 m 2 + 2 m + τ η ( m 1 ) C μ k n 1 σ j = 1 k n μ k n N 2 m 2 + j ( 1 + μ k n y x k , j ) N 2 m 2 + τ + j .

Combining (3.12) and (3.13), we obtain

( ) r ξ n ( ) y 1 i 1 ( ) y N i N ( y ) C j = 1 k n μ k n N 2 m 2 + j ( 1 + μ k n y x k , j ) N 2 m 2 + τ + j μ k n 1 σ .

Lemma 3.6

There exists a constant C > 0 such that for all y R N and r = 1 , , 2 m 1 ,

( ) r ω k n ( ) y 1 i 1 ( ) y N i N ( y ) C j = 1 k n μ k n N 2 m 2 + j ( 1 + μ k n y x k , j ) N 2 m 2 + τ + j μ k n 1 σ ,

where s = 1 N i s = r .

Proof

From (3.2) of [24] and similar to the proof of Lemma 3.5, we can prove

( ) r ω k n ( ) y 1 i 1 ( ) y N i N ( y ) C j = 1 k n μ k n N 2 m 2 + j ( 1 + μ k n y x k , j ) N 2 m 2 + τ + j μ k n 1 σ .

Lemma 3.7

ξ ^ n 0 uniformly in C m ( B R ( 0 ) ) for any R > 0 .

Proof

The proof consists of the following steps.

Step 1. Recall that

Ω j = y = ( y , y ) R 2 × R N 2 : ( y , 0 ) y , x k n , j x k n , j cos π k n .

To prove b 1 , n 0 , we apply the identities in Lemmas 2.1 and 2.2 in the domain Ω 1 .

Case 1. m is even: By Lemma 2.1, we have

(3.14) R N u k n m 1 ξ n K ( y ) , y = 0 .

Thus,

Ω 1 u k n m 1 ξ n K ( y ) , y = 0 ,

which implies that

(3.15) r k n Ω 1 u k n m 1 ξ n K ( y ) y 1 = Ω 1 u k n m 1 ξ n K ( y ) , y x k n , 1 .

Case 2. If m is odd: By Lemma 2.2, similar to Case 1, we also get (3.15).

Since K ( x k n , 1 ) = O ( x k n , 1 r 0 ) = O ( μ k n 1 σ ) and

(3.16) Ω 1 u k n m 1 ξ n = ( Ω 1 ) x k n , 1 , μ k n μ k n N 2 m 2 u k n ( μ k n 1 y + x k n , 1 ) m 1 ξ ^ n = ( Ω 1 ) x k n , 1 , μ k n U 0 , 1 m 1 ( b 0 , n ψ 0 + b 1 , n ψ 1 ) + O ( μ k n 1 σ ) = R N U 0 , 1 m 1 ( b 0 , n ψ 0 + b 1 , n ψ 1 ) + O ( μ k n 1 σ ) = O ( μ k n 1 σ ) ,

where ( Ω 1 ) x k n , 1 , μ k n = { y : μ k n 1 y + x k n , 1 Ω 1 } , we find

(3.17) Ω 1 u k n m 1 ξ n K ( y ) y 1 = Ω 1 u k n m 1 ξ n K ( y ) y 1 K ( x k n , 1 ) y 1 + O ( μ k n 2 2 σ ) = B r k n sin π k n ( x k n , 1 ) u k n m 1 ξ n K ( y ) y 1 K ( x k n , 1 ) y 1 + O ( μ k n 2 2 σ ) = B r k n sin π k n ( x k n , 1 ) u k n m 1 ξ n K ( x k n , 1 ) y 1 , y x k n , 1 + 1 2 ( ) 2 K ( x k n , 1 ) y 1 ( y x k n , 1 ) , y x k n , 1 + O ( y x k n , 1 3 ) + O ( μ k n 2 2 σ ) = R N U 0 , 1 m 1 ( b 0 , n ψ 0 + b 1 , n ψ 1 ) K ( x k n , 1 ) y 1 , y μ k n + 1 2 ( ) 2 K ( x k n , 1 ) y 1 y μ k n , y μ k n + O ( μ k n 2 2 σ ) = K ( x k n , 1 ) b 1 , n μ k n R N U 0 , 1 m 1 ψ 1 y 1 + Δ K ( x k n , 1 ) y 1 b 0 , n 2 N μ k n 2 R N U 0 , 1 m 1 ψ 0 y 2 + O ( μ k n 2 2 σ ) .

On the other hand, we have

(3.18) Ω 1 u k n m 1 ξ n K ( y ) , y x k n , 1

= Ω 1 u k n m 1 ξ n K ( y ) K ( x k n , 1 ) , y x k n , 1 + O ( μ k n 2 2 σ ) = B r k n sin π k n ( x k n , 1 ) u k n m 1 ξ n K ( y ) K ( x k n , 1 ) , y x k n , 1 + O ( μ k n 2 2 σ ) = B r k n sin π k n ( x k n , 1 ) u k n m 1 ξ n ( ) 2 K ( x k n , 1 ) ( y x k n , 1 ) , y x k n , 1 + O ( μ k n 2 2 σ ) = R N U 0 , 1 m 1 ( b 0 , n ψ 0 + b 1 , n ψ 1 ) ( ) 2 K ( x k n , 1 ) μ k n 1 y , μ k n 1 y + O ( μ k n 2 2 σ ) = b 0 , n Δ K ( x k n , 1 ) N μ k n 2 R N U 0 , 1 m 1 ψ 0 y 2 + O ( μ k n 2 2 σ ) .

Therefore, (3.17) and (3.18) give

(3.19) b 1 , n = R N U 0 , 1 m 1 ψ 0 y 2 μ k n K ( x k n , 1 ) R N U 0 , 1 m 1 ψ 1 y 1 K ( x k n , 1 ) r k n N + Δ K ( x k n , 1 ) y 1 2 N b 0 , n + O ( μ k n 1 2 σ ) .

Step 2. Next we prove that b 0 , n = o ( 1 ) .

Case 1. If m is even: We apply Pohozaev identity (2.15) in Lemma 2.1 to u k n with x 0 = x k n , 1 and d μ k n 1 + α , where max 2 N , 1 N 2 m 2 + τ < α < 2 N 2 m : we have

(3.20) B d ( x k n , 1 ) u k n m 1 ξ K ( y ) , y x 0 = B d ( x k n , 1 ) K ( y ) u k n m 1 ξ n ν , y x 0 B d ( x k n , 1 ) Δ m 2 u k n Δ m 2 ξ n ν , y x 0 + i = 1 m 2 B d ( x k n , 1 ) Δ m i u k n ν Δ i 1 ξ n , y x 0 + Δ m i u k n Δ i 1 ξ n , y x 0 ν Δ m i ξ n ν Δ i 1 u k n , y x 0 + Δ m i ξ n Δ i 1 u k n , y x 0 ν + N 2 m 2 i = 1 m 2 B d ( x k n , 1 ) Δ m i u k n Δ i 1 ξ n ν + Δ m i ξ n Δ i 1 u k n ν Δ m i u k n ν Δ i 1 ξ n Δ m i ξ n ν Δ i 1 u k n .

Similar to (3.18), we obtain

(3.21) LHS of (3.20) = b 0 , n Δ K ( x k n , 1 ) N μ k n 2 U 0 , 1 m 1 ψ 0 y 2 + O 1 μ k n 2 + σ = a ˜ N , m , K b 0 , n μ k n 2 + O 1 μ k n 2 + σ ,

where a ˜ N , m , K = K ( r 0 ) N U 0 , 1 m 1 ψ 0 y 2 = ( N 2 m ) K ( r 0 ) 2 N C N , m m y 2 ( y 2 1 ) ( 1 + y 2 ) N + 1 .

In the following, we estimate the right-hand side (RHS) of (3.20).

A direct computation leads to

(3.22) B d ( x k n , 1 ) K ( y ) u k n m 1 ξ n y x k n , 1 , ν = O 1 ( μ k n d ) N = O 1 μ k n 2 + σ .

Integrating by parts, we have

(3.23) B d ( x k n , 1 ) Δ m 2 u k n Δ m 2 ξ n ν , y x 0 + i = 1 m 2 B d ( x k n , 1 ) Δ m i u k n ν Δ i 1 ξ n , y x 0 + Δ m i u k n Δ i 1 ξ n , y x 0 ν Δ m i ξ n ν Δ i 1 u k n , y x 0 + Δ m i ξ n Δ i 1 u k n , y x 0 ν + N 2 m 2 i = 1 m 2 B d ( x k n , 1 ) Δ m i u k n Δ i 1 ξ n ν + Δ m i ξ n Δ i 1 u k n ν Δ m i u k n ν Δ i 1 ξ n Δ m i ξ n ν Δ i 1 u k n = B d ( x k n , 1 ) ( Δ ) m u k n ξ n , y x k n , 1 + ( Δ ) m ξ n u k n , y x k n , 1 N 2 m 2 B d ( x k n , 1 ) ( Δ ) m u k n ξ n + ( Δ ) m ξ n u k n .

Define

I ( u , v ) B d ( x k n , 1 ) ( Δ ) m u v , y x k n , 1 + ( Δ ) m v u , y x k n , 1 N 2 m 2 B d ( x k n , 1 ) ( Δ ) m u v + ( Δ ) m v u .

Noting that

u k n = j = 1 k n U x k n , j , μ k n + w k n

and

ξ n = b 0 , n j = 1 k n μ k n U x k n , j , μ k n μ k n + b 1 , n j = 1 k n μ k n 1 U x k n , j , μ k n r k n + ξ n ,

we have

(3.24) I ( u k n , ξ n ) = b 0 , n I j = 1 k n U x k n , j , μ k n , j = 1 k n μ k n U x k n , j , μ k n μ k n + b 0 , n I w k n , j = 1 k n μ k n U x k n , j , μ k n μ k n + b 1 , n I j = 1 k n U x k n , j , μ k n , j = 1 k n μ k n 1 U x k n , j , μ k n r k n + b 1 , n I w k n , j = 1 k n μ k n 1 U x k n , j , μ k n r k n + I j = 1 k n U x k n , j , μ k n , ξ n + I ( w k n , ξ n ) .

We can compute that

(3.25) I j = 1 k n U x k n , j , μ k n , j = 1 k n μ k n U x k n , j , μ k n μ k n = B d ( x k n , 1 ) N 2 m 2 U x k n , 1 , μ k n m 1 j = 2 k n μ k n U x k n , j , μ k n μ k n + ( m 1 ) U x k n , 1 , μ k n m 2 μ k n U x k n , 1 , μ k n μ k n j = 2 k n U x k n , j , μ k n U x k n , 1 , μ k n m 1 μ k n U x k n , 1 , μ k n μ k n , y x k n , 1 ( m 1 ) U x k n , 1 , μ k n m 2 μ k n U x k n , 1 , μ k n μ k n U x k n , 1 , μ k n , y x k n , 1 N U x k n , 1 , μ k n m 1 μ k n U x k n , 1 , μ k n μ k n + O 1 μ k n 2 + σ

= N 2 m 2 μ k n μ k n B d ( x k n , 1 ) U x k n , 1 , μ k n m 1 j = 2 k n U x k n , j , μ k n + μ k n B d ( x k n , 1 ) U x k n , 1 , μ k n m 1 U x k n , 1 , μ k n μ k n ν , y x k n , 1 + O 1 μ k n 2 + σ = N 2 m 2 μ k n B μ k n d ( 0 ) U 0 , 1 m 1 μ k n j = 2 k n U μ k n ( x k n , j x k n , 1 ) , 1 + O ( ( μ k n d ) N ) + O 1 μ k n 2 + σ = ( N 2 m ) 2 2 C N , m B μ k n d ( 0 ) U 0 , 1 m 1 j = 2 k n 1 ( μ k n x k n , j x k n , 1 ) N 2 m + O 1 μ k n 2 + σ .

And from [24], we know that

j = 2 k n 1 ( μ k n x k n , 1 x k n , j ) N 2 m = K ( r 0 ) y 2 U 0 , 1 m C N , m N 2 μ k n 2 U 0 , 1 m 1 + O 1 μ k n 2 + σ .

Thus,

(3.26) I j = 1 k n U x k n , j , μ k n , j = 1 k n μ k n U x k n , j , μ k n μ k n = a N , m , K μ k n 2 + O 1 μ k n 2 + σ ,

where

(3.27) a N , m , K = N 2 m 2 N 2 C N , m m y 2 ( 1 + y 2 ) N N y 2 2 m ( 1 + y 2 ) N + 2 m 2 + 1 1 ( 1 + y 2 ) N + 2 m 2 K ( r 0 ) .

Similarly, noting that μ k n 1 U x k n , 1 , μ k n r k n , μ k n 1 U x k n , 1 , μ k n r k n , y x k n , 1 is odd with respect to ( y x k n , 1 ) 1 , we have that

(3.28) I j = 1 k n U x k n , j , μ k n , j = 1 k n μ k n 1 U x k n , j , μ k n r k n = B d ( x k n , 1 ) U x k n , 1 , μ k n m 1 μ k n 1 U x k n , 1 , μ k n r k n , y x k n , 1 B d ( x k n , 1 ) ( m 1 ) U x k n , 1 , μ k n m 2 μ k n 1 U x k n , 1 , μ k n r k n × U x k n , 1 , μ k n , y x k n , 1 N B d ( x k n , 1 ) U x k n , 1 , μ k n m 1 μ k n 1 U x k n , 1 , μ k n r k n + O 1 μ k n 1 + σ = O 1 μ k n 1 + σ .

For the term I w k n , j = 1 k n μ k n U x k n , j , μ k n μ k n , integrating by parts, we obtain

I w k n , j = 1 k n μ k n U x k n , j , μ k n μ k n = B d ( x k n , 1 ) Δ m 2 w k n Δ m 2 j = 1 k n μ k n U x k n , j , μ k n μ k n ν , y x 0 + i = 1 m 2 B d ( x k n , 1 ) Δ m i w k n ν Δ i 1 j = 1 k n μ k n U x k n , j , μ k n μ k n , y x 0

+ Δ m i w k n Δ i 1 j = 1 k n μ k n U x k n , j , μ k n μ k n , y x 0 ν Δ m i j = 1 k n μ k n U x k n , j , μ k n μ k n ν Δ i 1 w k n , y x 0 + Δ m i j = 1 k n μ k n U x k n , j , μ k n μ k n Δ i 1 w k n , y x 0 ν + N 2 m 2 i = 1 m 2 B d ( x k n , 1 ) Δ m i w k n Δ i 1 j = 1 k n μ k n U x k n , j , μ k n μ k n ν + Δ m i j = 1 k n μ k n U x k n , j , μ k n μ k n Δ i 1 w k n ν Δ m i w k n ν Δ i 1 j = 1 k n μ k n U x k n , j , μ k n μ k n Δ m i j = 1 k n μ k n U x k n , j , μ k n μ k n ν Δ i 1 w k n .

As a result,

I w k n , j = 1 k n μ k n U x k n , j , μ k n μ k n C μ k n 1 σ B d ( x k n , 1 ) j = 1 k n μ k n N 2 m 2 + m ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + m j = 1 k n μ k n N 2 m 2 + m ( 1 + μ k n y x k n , j ) N 2 m + m + i = 1 m 2 B d ( x k n , 1 ) j = 1 k n μ k n N 2 m 2 + 2 ( m i ) + 1 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + 2 ( m i ) + 1 j = 1 k n μ k n N 2 m 2 + 2 ( i 1 ) + 1 ( 1 + μ k n y x k n , j ) N 2 m + 2 ( i 1 ) + 1 + j = 1 k n μ k n N 2 m 2 + 2 ( m i ) ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + 2 ( m i ) j = 1 k n μ k n N 2 m 2 + 2 ( i 1 ) + 2 ( 1 + μ k n y x k n , j ) N 2 m + 2 ( i 1 ) + 2 d + i = 2 m 2 B d ( x k n , 1 ) j = 1 k n μ k n N 2 m 2 + 2 ( m i ) + 1 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + 2 ( m i ) + 1 j = 1 k n μ k n N 2 m 2 + 2 ( i 1 ) ( 1 + μ k n y x k n , j ) N 2 m + 2 ( i 1 ) + j = 1 k n μ k n N 2 m 2 + 2 ( m i ) ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + 2 ( m i ) j = 1 k n μ k n N 2 m 2 + 2 ( i 1 ) + 1 ( 1 + μ k n y x k n , j ) N 2 m + 2 ( i 1 ) + 1 + i = 1 m 2 B d ( x k n , 1 ) j = 1 k n μ k n N 2 m 2 + 2 ( i 1 ) + 1 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + 2 ( i 1 ) + 1 j = 1 k n μ k n N 2 m 2 + 2 ( m i ) + 1 ( 1 + μ k n y x k n , j ) N 2 m + 2 ( m i ) + 1 + j = 1 k n μ k n N 2 m 2 + 2 ( i 1 ) + 2 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + 2 ( i 1 ) + 2 j = 1 k n μ k n N 2 m 2 + 2 ( m i ) ( 1 + μ k n y x k n , j ) N 2 m + 2 ( m i ) d + i = 2 m 2 B d ( x k n , 1 ) j = 1 k n μ k n N 2 m 2 + 2 ( i 1 ) + 1 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + 2 ( i 1 ) + 1 j = 1 k n μ k n N 2 m 2 + 2 ( m i ) ( 1 + μ k n y x k n , j ) N 2 m + 2 ( m i ) + j = 1 k n μ k n N 2 m 2 + 2 ( i 1 ) + 1 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + 2 ( i 1 ) + 1 j = 1 k n μ k n N 2 m 2 + 2 ( m i ) ( 1 + μ k n y x k n , j ) N 2 m + 2 ( m i ) + i = 1 m 2 B d ( x k n , 1 ) j = 1 k n μ k n N 2 m 2 + 2 ( m i ) ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + 2 ( m i ) j = 1 k n μ k n N 2 m 2 + 2 ( i 1 ) + 1 ( 1 + μ k n y x k n , j ) N 2 m + 2 ( i 1 ) + 1

+ j = 1 k n μ k n N 2 m 2 + 2 ( m i ) + 1 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + 2 ( m i ) + 1 j = 1 k n μ k n N 2 m 2 + 2 ( i 1 ) ( 1 + μ k n y x k n , j ) N 2 m + 2 ( i 1 ) + j = 1 k n μ k n N 2 m 2 + 2 ( i 1 ) ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + 2 ( i 1 ) j = 1 k n μ k n N 2 m 2 + 2 ( m i ) + 1 ( 1 + μ k n y x k n , j ) N 2 m + 2 ( m i ) + 1 + j = 1 k n μ k n N 2 m 2 + 2 ( i 1 ) + 1 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + 2 ( i 1 ) + 1 j = 1 k n μ k n N 2 m 2 + 2 ( m i ) ( 1 + μ k n y x k n , j ) N 2 m + 2 ( m i ) C μ k n 1 σ B d ( x k n , 1 ) μ k n N d ( 1 + μ k n y x k n , 1 ) N 2 m 2 + τ + N + μ k n N 1 ( 1 + μ k n y x k n , 1 ) N 2 m 2 + τ + N 1 C μ k n 1 σ ( μ k n d ) N 2 m 2 + τ C μ k n 2 σ .

As a consequence, we obtain

(3.29) I w k n , j = 1 k n μ k n U x k n , j , μ k n μ k n = O 1 μ k n 2 + σ .

Similarly, we have

(3.30) I w k n , j = 1 k n μ k n 1 U x k n , j , μ k n r k n = O 1 μ k n 1 + σ ,

(3.31) I j = 1 k n U x k n , j , μ k n , ξ n = O 1 μ k n 2 + σ ,

and

(3.32) I ( w k n , ξ n ) C μ k n 2 σ B d ( x k n , 1 ) μ k n N d ( 1 + μ k n y x k n , 1 ) N + 2 τ + μ k n N 1 ( 1 + μ k n y x k n , 1 ) 2 τ + N 1 C μ k n 2 σ .

Combining (3.26)–(3.32) and b 1 , n = O 1 μ k n in Step 1, (3.24) becomes

I ( u k n , ξ n ) = a N , m , K μ k n 2 b 0 , n + O 1 μ k n 2 + σ .

Combining (3.22)–(3.24), we have

(3.33) RHS of (3.20) = a N , m , K μ k n 2 b 0 , n + O 1 μ k n 2 + σ .

As a consequence, we have that

a ˜ N , s , K b 0 , n μ k n 2 + O 1 μ k n 2 + σ = a N , m , K b 0 , n μ k n 2 + O 1 μ k n 2 + σ ,

where a N , m , K is defined in (3.27).

A direct computation shows that a N , m , K a ˜ N , s , K = N 2 m 2 , due to N > 2 m + 2 .

Thus, b 0 , n = o ( 1 ) .

Case: m is odd. Appling (2.15) and similar to Case 1, we also have b 0 , n = o ( 1 ) .

Noting that b 0 , n b 0 , b 1 , n b 1 , as n + and Lemma 3.3, the result follows.□

Now, we give the proof of Theorem 1.1.

Proof

With the aid of the above prepared lemmas, it is sufficient to get a contradiction with ξ n = 1 .

In fact, we have

(3.34) ξ n ( y ) = ( m 1 ) R N 1 z y N 2 m K ( z ) u k n m 2 ( z ) ξ n ( z ) d z

and

R N 1 z y N 2 m K ( z ) u k n m 2 ( z ) ξ n ( z ) d z C ξ n R N 1 z y N 2 m K ( z ) u k n m 2 ( z ) j = 1 k n μ k n N 2 m 2 ( 1 + μ k n z x k n , j ) N 2 m 2 + τ d z C ξ n j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + θ ,

for some θ > 0 . So we obtain

ξ n ( y ) j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k , j ) N 2 m 2 + τ C ξ n j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ + θ j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ .

Since ξ n 0 in B R μ k n 1 ( x k m , j ) and ξ n = 1 , we know that

ξ n ( y ) j = 1 k n μ k n N 2 m 2 ( 1 + μ k n y x k n , j ) N 2 m 2 + τ

attains its maximum in R N j = 1 k n B R μ k n 1 ( x k n , j ) . Thus,

ξ n o ( 1 ) ξ n .

So ξ n 0 as m + . This is a contradiction to ξ n = 1 .□

  1. Funding information: This work was supported by NSFC (No. 11771235 and 12031015).

  2. Conflict of interest: Authors state no conflict of interest.

Appendix Basic estimates

In this section, we give some essential estimates which can be found in [27,1]. Define

g i j ( y ) 1 ( 1 + y x i ) α ( 1 + y x j ) β ,

where x i x j , α > 0 , β > 0 are some constants.

Lemma A.1

For any constant γ satisfying 0 < γ min { α , β } , we have

g i j ( y ) C x i x j γ 1 ( 1 + y x i ) α + β γ + 1 ( 1 + y x i ) α + β γ .

Lemma A.2

For any constant κ > 0 with κ N 2 m , there is a constant C > 0 such that

R N 1 y z N 2 m 1 ( 1 + z ) 2 m + κ d z C ( 1 + y ) min { κ , N 2 m } .

For κ = N 2 m , there exists a constant C > 0 such that

R N 1 y z N 2 m 1 ( 1 + z ) N d z C max { 1 , log y } ( 1 + y ) min { κ , N 2 m } .

References

[1] J. Wei and S. Yan, Infinitely many solutions for the prescribed scalar curvature problem on SN, J. Funct. Anal. 258 (2010), no. 9, 3048–3081. 10.1016/j.jfa.2009.12.008Search in Google Scholar

[2] A. Ambrosetti, J. Garcia-Azorero, and I. Peral, Perturbation of −Δu−uN+2N−2=0, the scalar curvature problem in RN and related topic, J. Funct. Anal. 165 (1999), no. 1, 117–149. 10.1006/jfan.1999.3390Search in Google Scholar

[3] L. Caffarelli, B. Gidas, and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), no. 3, 271–297. 10.1002/cpa.3160420304Search in Google Scholar

[4] Y.Y. Li, On −Δu=K(x)u5 in R3 in R3, Comm. Pure Appl. Math. 46 (1993), no. 3, 303–340. 10.1002/cpa.3160460302Search in Google Scholar

[5] C.-S Lin, On Liouville theorem and a priori estimates for the scalar curvature equations, Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) 27 (1998), no. 1, 107–130. Search in Google Scholar

[6] C.-S Lin and S.-S Lin, Positive radial solutions for Δu+K(x)un+2n−2=0 in Rn and related topics, Appl Anal. 38 (1990), no. 3, 121–159. 10.1080/00036819008839959Search in Google Scholar

[7] S. Yan, Concentration of solutions for the scalar curvature equation on RN, J. Differ. Equ. 163 (2000), no. 2, 239–264. 10.1006/jdeq.1999.3718Search in Google Scholar

[8] G. Bianchi, Non-existence and symmetry of solutions to the scalar curvature equation, Comm Partial Differ. Equ. 21 (1996), no. 1–2, 229–234. 10.1080/03605309608821182Search in Google Scholar

[9] J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann. 313 (1999), no. 2, 207–228. 10.1007/s002080050258Search in Google Scholar

[10] S. M. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary), SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 036, 3. 10.3842/SIGMA.2008.036Search in Google Scholar

[11] T. P. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal. 74 (1987), no. 2, 199–291. 10.1016/0022-1236(87)90025-5Search in Google Scholar

[12] S.-Y.A. Chang and P. C. Yang, Partial differential equations related to the Gauss-Bonnet-Chern integrand on 4-manifolds, Conformal, Riemannian and Lagrangian geometry, Lecture Ser. 27 (2002), 1–30. 10.1090/ulect/027/01Search in Google Scholar

[13] S.-Y.A. Chang and P. C. Yang, A perturbation result in prescribing scalar curvature on Sn, Duke Math. J. 64 (1991), no. 1, 27–69. 10.1215/S0012-7094-91-06402-1Search in Google Scholar

[14] T. Bartsch, M. Schneider, and T. Weth, Multiple solutions of a critical polyharmonic equation, J. Reine Angew. Math. 571 (2004), 131–143. 10.1515/crll.2004.037Search in Google Scholar

[15] T. Bartsch, T. Weth, and M. Millem, A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator, Calc. Var. Partial Differ. Equ. 18 (2003), no. 3, 253–268. 10.1007/s00526-003-0198-9Search in Google Scholar

[16] D. E. Edmunds, D. Fortunato, and E. Jannelli, Critical exponents, critical dimensions and biharmonic operator, Arch. Ration. Mech. Anal. 112 (1990), no. 3, 269–289. 10.1007/BF00381236Search in Google Scholar

[17] Y. Guo, J. Liu, and Y. Zhang, Nonexistence of positive solutions for polyharmonic systems in RN, Adv. Nonlinear Stud. 7 (2007), no. 3, 381–402. 10.3934/cpaa.2016.15.701Search in Google Scholar

[18] Y. Guo, and T. Liu, Large energy bubble solutions for Schrödinger equation with supercritical growth, Adv. Nonlinear Stud. 21 (2021), no. 2, 421–445. 10.1515/ans-2021-2125Search in Google Scholar

[19] F. Gazzola, H.-C. Grunau, and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differ. Equ. 18 (2003), no. 2, 117–143. 10.1007/s00526-002-0182-9Search in Google Scholar

[20] H.-C Grunau and G. Sweers, The maximum principle and positive principle eigenfunctions for polyharmonic equations, Lecture Notes in Pure and Appl. Math. 194, Dekker, New York 1998, pp. 163–183. 10.1201/9781003072195-15Search in Google Scholar

[21] H.-C Grunau and G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann. 307 (1997), no. 4, 588–626. 10.1007/s002080050052Search in Google Scholar

[22] P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), no. 3, 681–703. 10.1512/iumj.1986.35.35036Search in Google Scholar

[23] P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. 69 (1990), no. 1, 55–83. Search in Google Scholar

[24] Y. Guo and B. Li, Infinitely many solutions for the prescribed curvature problem of polyharmonic operator, Calc. Var. Partial Differ. Equ. 46 (2013), no. 3–4, 809–836. 10.1007/s00526-012-0504-5Search in Google Scholar

[25] Y. Guo, M. Musso, S. Peng, and S. Yan, Non-degeneracy of multi-bubbling solutions for the prescribed scalar curvature equations and applications, J. Funct. Anal. 279 (2020), no. 6, 29. 10.1016/j.jfa.2020.108553Search in Google Scholar

[26] C. A. Swanson, The best Sobolev constant, Appl. Anal. 47 (1992), no. 4, 227–239. 10.1080/00036819208840142Search in Google Scholar

[27] Y. Y. Li, J. Wei, and H. Xu, Multi-bump solutions of −Δu=K(x)un+2n−2 on lattices in Rn, J. Reine Angew. Math. 743 (2018), 163–211. 10.1515/crelle-2015-0090Search in Google Scholar

Received: 2021-10-27
Revised: 2022-01-19
Accepted: 2022-02-04
Published Online: 2022-03-03

© 2022 Yuxia Guo and Yichen Hu, published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Research Articles
  2. Editorial
  3. A sharp global estimate and an overdetermined problem for Monge-Ampère type equations
  4. Non-degeneracy of bubble solutions for higher order prescribed curvature problem
  5. On fractional logarithmic Schrödinger equations
  6. Large solutions of a class of degenerate equations associated with infinity Laplacian
  7. Chemotaxis-Stokes interaction with very weak diffusion enhancement: Blow-up exclusion via detection of absorption-induced entropy structures involving multiplicative couplings
  8. Asymptotic mean-value formulas for solutions of general second-order elliptic equations
  9. Weighted critical exponents of Sobolev-type embeddings for radial functions
  10. Existence and asymptotic behavior of solitary waves for a weakly coupled Schrödinger system
  11. On the Lq-reflector problem in ℝn with non-Euclidean norm
  12. Existence of normalized solutions for the coupled elliptic system with quadratic nonlinearity
  13. Normalized solutions for a class of scalar field equations involving mixed fractional Laplacians
  14. Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems
  15. Multiple solutions to multi-critical Schrödinger equations
  16. Existence of solutions to contact mean-field games of first order
  17. The regularity of weak solutions for certain n-dimensional strongly coupled parabolic systems
  18. Uniform stabilization for a strongly coupled semilinear/linear system
  19. Existence of nontrivial solutions for critical Kirchhoff-Poisson systems in the Heisenberg group
  20. Existence of ground state solutions for critical fractional Choquard equations involving periodic magnetic field
  21. Least energy sign-changing solutions for Schrödinger-Poisson systems with potential well
  22. Lp Hardy's identities and inequalities for Dunkl operators
  23. Global well-posedness analysis for the nonlinear extensible beam equations in a class of modified Woinowsky-Krieger models
  24. Gradient estimate of the solutions to Hessian equations with oblique boundary value
  25. Sobolev-Gaffney type inequalities for differential forms on sub-Riemannian contact manifolds with bounded geometry
  26. A Liouville theorem for the Hénon-Lane-Emden system in four and five dimensions
  27. Regularity of degenerate k-Hessian equations on closed Hermitian manifolds
  28. Principal eigenvalue problem for infinity Laplacian in metric spaces
  29. Concentrations for nonlinear Schrödinger equations with magnetic potentials and constant electric potentials
  30. A general method to study the convergence of nonlinear operators in Orlicz spaces
  31. Existence of ground state solutions for critical quasilinear Schrödinger equations with steep potential well
  32. Global existence of the two-dimensional axisymmetric Euler equations for the Chaplygin gas with large angular velocities
  33. Existence of two solutions for singular Φ-Laplacian problems
  34. Existence and multiplicity results for first-order Stieltjes differential equations
  35. Concentration-compactness principle associated with Adams' inequality in Lorentz-Sobolev space
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ans-2022-0003/html
Scroll to top button