Startseite Partial Hölder continuity for nonlinear sub-elliptic systems with VMO-coefficients in the Heisenberg group
Artikel Open Access

Partial Hölder continuity for nonlinear sub-elliptic systems with VMO-coefficients in the Heisenberg group

  • Jialin Wang EMAIL logo und Juan J. Manfredi
Veröffentlicht/Copyright: 2. Juli 2016

Abstract

We consider nonlinear sub-elliptic systems with VMO-coefficients in the Heisenberg group and prove partial Hölder continuity results for weak solutions using a generalization of the technique of 𝒜-harmonic approximation. The model case is the following non-degenerate p-sub-Laplace system with super-quadratic natural growth with respect to the horizontal gradients Xu:

-i=12nXi(a(ξ)(1+|Xu|2)(p-2)/2Xiuα)=fα,α=1,2,,N,

where a(ξ)VMO and 2<p<.

MSC 2010: 35H20; 35B65

1 Introduction and statements of main results

The aim of this paper is to prove partial Hölder continuity of weak solutions for nonlinear sub-elliptic systems in divergence form with coefficients that belong to the space of functions with vanishing mean oscillation (VMO) in the Heisenberg group n. The primary example covered by our analysis is the non-degenerate p-sub-Laplacian system

(1.1)-i=12nXi(a(ξ)(1+|Xu|2)(p-2)/2Xiuα)=fα,α=1,2,,N,

with a(ξ)VMO and 2<p<. Here, we denote by ξ=(x1,x2,,xn,y1,y2,,yn,t) points in n, and we use the following notation:

XiXi(ξ)=xi-yi2t,Xn+iXn+i(ξ)=yi+xi2t,TT(ξ)=t

and

Xu=[X1u1X1u2X1uNX2u1X2u2X2uNX2nu1X2nu2X2nuN]2n×N.

In Section 2 we will present additional details about the Heisenberg group.

More generally, we shall consider the following nonlinear sub-elliptic system in divergence form:

(1.2)-i=12nXiAiα(ξ,u,Xu)=fα(ξ,u,Xu)in Ω,α=1,2,,N,

where Ω is a bounded domain in n,

A:=(Aiα):Ω×N×2n×N2n×Nandf:=(fα):Ω×N×2n×NN.

When the coefficients Aiα is Hölder continuous or Dini continuous, partial regularity results for nonlinear sub-elliptic systems have been established by several authors; see, for example, [4, 17, 27, 29, 28]. We focus our attention on weakening the assumptions on Aiα to be discontinuous, i.e., the partial mapping ξ(1+|P|)-(p-1)Aiα(ξ,u,P) is only VMO in ξ uniformly in (u,P), in the sense of (1.5) below and, moreover, u(1+|P|)-(p-1)Aiα(ξ,u,P) is continuous in the sense of (1.3) below. The method of proof employed here will avoid the use of Lq, Lp-estimates for the horizontal gradient and reverse Hölder inequalities. Our tool of choice is the use of the harmonic approximation lemma, see Lemma 4.1 below. More precisely, we assume the following super-quadratic structural conditions on Aiα and fα:

  1. The term Aiα(ξ,u,P) is differentiable in P, and there exists a constant L such that

    |DPAiα(ξ,u,P)|L(1+|P|2)(p-2)/2,(ξ,u,P)Ω×N×2n×N,p>2,
  2. The term Aiα(ξ,u,P) is uniformly elliptic, that is, for some λ>0 we have

    i,j=12nα,β=1NDPAiα(ξ,u,P)ηiαηjβλ(1+|P|)p-2|η|2for all η2n×N.
  3. The term Aiα(ξ,u,P) is continuous with respect to the second variable u, while DPAiα(ξ,u,P) is continuous with respect to P. More precisely, there exist two bounded, concave and non-decreasing moduli of continuity ω,μ:[0,)[0,1], with lims0ω(s)=0=ω(0) and lims0μ(s)=0=μ(0), such that

    (1.3)|Aiα(ξ,u,P)-Aiα(ξ,u0,P)|Lω(|u-u0|2)(1+|P|)p-1,
    (1.4)|DPAiα(ξ,u,P)-DPAiα(ξ,u,P0)|Lμ(|P-P0|1+|P|+|P0|)(1+|P|+|P0|)p-2,

    whenever ξΩ,u,u0N and P,P02n×N.

  4. The mapping ξAiα(ξ,u,P)/(1+|P|)p-1 satisfies the following VMO-condition uniformly in u and P:

    (1.5)|Aiα(ξ,u,P)-(Aiα(,u,P))ξ0,r|𝐯ξ0(ξ,r)(1+|P|)p-1for all ξBr(ξ0),

    whenever ξ0Ω,r(0,ρ0],uN and P2n×N, where ρ0>0 and 𝐯ξ0:2n+1×[0,ρ0][0,2L] are bounded functions satisfying

    limρ0𝐕(ρ)=0,where𝐕(ρ)=supξ0Ωsup0<rρBr(ξ0)Ω𝐯ξ0(ξ,r)𝑑ξ.

    Here, we have used the notation

    (Aiα(,u,P))ξ0,r:=Br(ξ0)ΩAiα(ζ,u,P)𝑑ζ.
  5. The functions fα satisfy the super-quadratic natural growth condition

    (1.6)|fα(ξ,u,P)|a|P|p+bfor |u|M,

    where the positive constants a=a(M) and b=b(M) depend only on M.

From (H2), we have the following estimate:

(1.7)(Aiα(ξ,u,P)-Aiα(ξ,u,P0))(P-P0)λ0((1+|P0|)p-2|P-P0|2+|P-P0|p),

with a positive constant λ0. Indeed, it is easy to verify, by the ellipticity assumption (H2), that

(Aiα(ξ,u,P)-Aiα(ξ,u,P0))(P-P0)=(i=12nα=1N01ddtAiα(ξ,u,tP+(1-t)P0)𝑑t)(P-P0)iα
=i,j=12nα,β=1N01PjβAiα(ξ,u,tP+(1-t)P0)(P-P0)iα(P-P0)jβ𝑑t
λ01(1+|tP+(1-t)P0|2)(p-2)/2|P-P0|2𝑑t.

Then, using the inequality (see [20, Lemma 2.1])

2-2(1+δ)01(1+|tP+(1-t)P0|2)δ/2𝑑t(1+|P|2+|P0|2)δ/22δ/2for all δ0,

we obtain (1.7). Clearly, the choice

Aiα(ξ,u,P)=a(ξ)(1+|P|2)(p-2)/2Piαfor i=1,,2n,α=1,,N,

makes system (1.1) fall into the class considered in (1.2), where a(ξ)VMO.

As is well known, we can not expect the weak solutions of the nonlinear system (1.2) to be classical, i.e., C2-solutions, even under reasonable assumptions on the coefficients Aiα and fα. This was first shown by De Giorgi [7]; we also refer the reader to [19, 6] for further discussion and additional examples. Then the goal is to establish partial regularity of solutions. The method of 𝒜-harmonic approximation was extended to include systems of p-Laplacian type by Duzaar and Mingione [15, 14], see also [16, 13]. Similar results have been proved under more general assumptions for Aiα and fα in the Euclidean setting; see [5] for Hölder continuous coefficients, [11, 12, 25] for Dini continuous coefficients and [1, 21, 26, 31] for VMO coefficients.

With respect to sub-elliptic equations and systems in the Heisenberg and general Carnot groups, new difficulties arise due to non-commutativity of the horizontal vectors Xi. For the case of sub-elliptic equations, we refer readers to [10, 8, 9, 2, 3, 23] and to [24] for more known results and details. For additional results focused on sub-elliptic systems, see [30, 4, 27] for the quadratic growth case, and [17, 29, 28] for non-quadratic cases. We note that the assumptions of continuity on the coefficients Aiα are required for those regularity results of sub-elliptic systems mentioned above. We also note that the quadratic growth case p=2 with VMO coefficients has been settled by Gao, Niu and Wang [18], who proved partial Hölder continuity of solutions. Recently, Zheng and Feng [32] considered the degenerate p-sub-Laplace system, and establish local Hölder continuity of weak solutions when p is near 2.

Under the previous assumptions(H1)(H5), we adapt the method of 𝒜-harmonic approximation to the sub-elliptic systems (1.2) in the Heisenberg group, and establish partial Hölder continuity for weak solutions.

Theorem 1.1.

Assume that the coefficients Aiα and fα satisfy assumptions (H1)(H5) with λ0>2a(M)M, where λ0 is defined in (1.7) and a(M) is defined in (H5). Let uHW1,p(Ω,RN)L(Ω,RN) be a weak solution to system (1.2), i.e.,

ΩAiα(ξ,u,Xu)Xiφα𝑑ξ=Ωfα(ξ,u,Xu)φα𝑑ξfor all φC0(Ω,N).

Then there exists a relatively closed set SinguΩ such that uC0,γ(ΩSingu,RN) for every γ(0,1). Furthermore, SinguΣ1Σ2, where

Σ1={ξ0Ω:supr>0(|uξ0,r|+|(Xu)ξ0,r|)=},Σ2={ξ0Ω:limr0+infBr(ξ0)|Xu-(Xu)ξ0,r|pdξ>0}.

Thus, the singular set has (2n+1)-Lebesgue measure zero, i.e., |Singu|=0, and its complement ΩSingu is a set of full measure in Ω.

Note that the Haar measure in 𝐇n is just the Lebesgue measure in 2n+1. The assumption 2a(M)M<λ0 is necessary for our proof of Theorem 1.1. Whether we may assume a(M)M<λ0 as a replacement is still an open issue. However, the following result shows that we can avoid the condition 2a(M)M<λ0 by slightly strengthening (1.6).

Theorem 1.2.

If we substitute condition (1.6) with |fα(ξ,u,P)|a|P|p-ϵ+b, with ϵ>0, then the conclusion of Theorem 1.1 is still valid without the requirement 2a(M)M<λ0.

We follow the strategy used by Bögelein, Duzaar, Habermann and Scheven in the Euclidean case in [1], with the necessary modification to handle the subelliptic case. First, we define a class of horizontal affine functions, and compute the minimizer of the functional via explicit polar coordinates formulas (see Lemma 3.1 below), and establish some estimates for affine functions in Heisenberg groups. The method of using Taylor’s expansion in [11] cannot be easily adapted to our situation. Instead, we choose different auxiliary functions, and use a Poincaré type inequality from [22] to obtain the desired excess improvement estimates. Our partial Hölder continuity results are valid for the full range 2<p<.

2 Preliminaries

The Heisenberg group n is defined as 2n+1 endowed with the following group multiplication:

((ξ1,t),(ξ~1,t~))(ξ1+ξ~1,t+t~+12i=1n(xiy~i-x~iyi)),

for all

ξ=(ξ1,t)=(x1,x2,,xn,y1,y2,,yn,t),ξ~=(ξ~1,t~)=(x~1,x~2,,x~n,y~1,y~2,,y~n,t~).

Its neutral element is 0, and its inverse to (ξ1,t) is given by (-ξ1,-t). Particularly, the mapping (ξ,ξ~)ξξ~-1 is smooth, so (n,) is a Lie group.

The basic vector fields corresponding to its Lie algebra can be explicitly calculated, and are given by

(2.1)XiXi(ξ)=xi-yi2t,Xn+iXn+i(ξ)=yi+xi2t,TT(ξ)=t

for i=1,2,,n, and note the special structure of the commutators:

[Xi,Xi+n]=-[Xi+n,Xi]=T,else  [Xi,Xj]=0and[T,T]=[T,Xi]=0,

that is, (n,) is a nilpotent Lie group of step 2. The vector X=(X1,,X2n) is called horizontal gradient and T vertical derivative.

The homogeneous norm is defined by

(ξ1,t)=(|ξ1|4+16t2)1/4,

and the metric induced by this homogeneous norm is given by

d(ξ~,ξ)=ξ-1ξ~.

The measure used on n is the Haar measure (Lebesgue measure in 2n+1), and the volume of the homogeneous ball BR(ξ0)={ξn:d(ξ0,ξ)<R} is given by

|BR(ξ0)|n=R2n+2|B1(ξ0)|n=ΔωnRQ,

where the number Q=2n+2 is called the homogeneous dimension of n, and the quantity ωn is the volume of the homogeneous ball of radius 1.

The horizontal Sobolev spaces HW1,p(Ω) (1p<) are defined as follows:

HW1,p(Ω)={uLp(Ω):XiuLp(Ω),i=1,2,,2n}.

Then HW1,p(Ω) is a Banach space with the norm

uHW1,p(Ω)=uLp(Ω)+i=12nXiuLp(Ω).

Lu [22] showed the following Poincaré type inequality related to Hörmander’s vector fields for uHW1,q(BR(ξ0)), 1<q<Q, 1pqQ/(Q-q):

(2.2)(BR(ξ0)|u-uξ0,R|pdξ)1/pCpR(BR(ξ0)|Xu|qdξ)1/q,

where

uξ0,R=Br(ξ0)u𝑑ξ=|Br(ξ0)|n-1Br(ξ0)u𝑑ξ.

Note the fact that the horizontal vectors Xi defined in (2.1) fits Hörmander’s vector fields, and that (2.2) is valid for p=q (2).

3 Horizontal affine function and estimates

Lemma 3.1.

Let uL2(Bρ(ξ0),RN), ξ0R2n+1, and consider the horizontal components

ξ¯:=(x1,x2,,xn,y1,y2,,yn),ξ¯0:=(x01,x02,,x0n,y01,y02,,y0n).

If the function

lξ0,ρ(ξ¯)=lξ0,ρ(ξ¯0)+Xlξ0,ρ(ξ¯-ξ¯0)

minimizes the functional

(3.1)lBρ(ξ0)|u-l|2𝑑ξ,

among horizontal affine functions l:R2nRN, then we have

lξ0,ρ(ξ¯0)=uξ0,ρ=Bρ(ξ0)u𝑑ξ

and

Xlξ0,ρ=Q-2c0QQ+2ρ2Bρ(ξ0)u(ξ¯-ξ¯0)𝑑ξ,

where the vector u(ξ¯-ξ¯0) has components uα(x1-x01,x2-x02,,x2n-x02n) with α=1,2,,N, and c0 is a positive constant defined by

(3.2)c0=0π(sinθ)n𝑑θ0π(sinθ)n-1𝑑θ={[(2k-2)!!]2(2k-1)!!(2k-3)!!2π,n=2k-1,[(2k-1)!!]2(2k)!!(2k-2)!!π2,n=2k.

Here, we use the notation (2k-2)!!=(2k-2)(2k-4)4×2 and (2k-1)!!=(2k-1)(2k-3)3×1.

Proof.

For simplicity and without loss of generality, it is enough to prove the case where N=1. We introduce the horizontal affine function l(ξ¯)=a+b,ξ¯-ξ¯0, a, b2n, and the function

P(a,b):=Bρ(ξ0)(uα-a-b,ξ¯-ξ¯0)2𝑑ξ,α=1,,N.

We first note that the function P(a,b) is differentiable with respect to the variables a and bi, i=1,2,,2n. A straightforward computation gives

Pa=2Bρ(ξ0)(a-uα+b,ξ¯-ξ¯0)𝑑ξ

and

Pbi=2Bρ(ξ0)(b,ξ¯-ξ¯0(ξ¯i-ξ¯0i)-uα(ξ¯i-ξ¯0i)+a(ξ¯i-ξ¯0i))𝑑ξ.

In view of the symmetry of the quasi-ball Bρ(ξ0) in the Heisenberg group, we have

Bρ(ξ0)(b,ξ¯-ξ¯0)𝑑ξ=0=Bρ(ξ0)a(ξ¯i-ξ¯0i)𝑑ξ

and

Bρ(ξ0)bj(ξ¯j-ξ¯0j)(ξ¯i-ξ¯0i)𝑑ξ=0for ij.

So letting P/a=0 and P/bi=0, we deduce

a=Bρ(ξ0)uα𝑑ξandbi=Bρ(ξ0)uα(ξ¯i-ξ¯0i)𝑑ξBρ(ξ0)(ξ¯i-ξ¯0i)2𝑑ξ.

Without loss of generality we calculate b1 in the sequel, so we are in the position of computing the average integral Bρ(ξ0)(x1-x01)2𝑑ξ. We take the following transformation:

x1-x01=r(sinθ)1/2cosθ1,
y1-y01=r(sinθ)1/2sinθ1cosθ2,
xn-x0n=r(sinθ)1/2sinθ1sinθ2sinθ3sinθ2n-4sinθ2n-3sinθ2n-2cosθ2n-1,
yn-y0n=r(sinθ)1/2sinθ1sinθ2sinθ3sinθ2n-4sinθ2n-3sinθ2n-2sinθ2n-1,
t-t0=r2cosθ

for 0rR, θ,θi(0,π), i=1,2,,2n-2 and θ2n-1(0,2π). Then an easy computation shows that the Jacobian of the transformation is given by

J=r2n+1(sinθ)n-1(sinθ1)2n-2(sinθ2)2n-3sinθ2n-2.

Therefore,

Bρ(ξ0)(x1-x01)2𝑑ξ=Bρ(ξ0)(x1-x01)2𝑑x|Bρ(ξ0)|n
=0ρr2n+3𝑑r0π(sinθ)n𝑑θ0π(sinθ1)2n-2(cosθ1)2𝑑θ10πsinθ2n-2dθ2n-20ρr2n+1𝑑r0π(sinθ)n-1𝑑θ0π(sinθ1)2n-2𝑑θ10πsinθ2n-2dθ2n-2
=Qρ2Q+2(1-0π(sinθ1)2n𝑑θ10π(sinθ1)2n-2𝑑θ1)0π(sinθ)n𝑑θ0π(sinθ)n-1𝑑θ
=Qρ2Q+21Q-20π(sinθ)n𝑑θ0π(sinθ)n-1𝑑θ,

which yields

b1=Q+2ρ2Q-2c0QBρ(ξ0)uα(x1-x01)𝑑ξ,wherec0=0π(sinθ)n𝑑θ0π(sinθ)n-1𝑑θ.

So we conclude that

lξ0,ρ(ξ¯0)=uξ0,ρ=Bρ(ξ0)u𝑑ξandXlξ0,ρ=Q-2c0QQ+2ρ2Bρ(ξ0)u(ξ¯-ξ¯0)𝑑ξ.

Since

Bρ(ξ0)(u-lξ0,ρ(ξ¯))𝑑ξ=0,

we have another version of the Poincaré inequality (2.2), that is,

(3.3)(Bρ(ξ0)|u-lξ0,ρ(ξ¯)|pdξ)1/pCpρ(Bρ(ξ0)|Xu|qdξ)1/q,

where 1<q<Q, 1pqQ/(Q-q).

With the results of Lemma 3.1, we have the following estimates.

Lemma 3.2.

Let uL2(Bρ(ξ0),RN) and θ(0,1). We denote by lξ0,ρ and lξ0,θρ, the horizontal affine functions defined as above for the radii ρ and θρ, respectively. Then we have

(3.4)|Xlξ0,ρ-Xlξ0,θρ|2(Q-2)2c0QQ+2(θρ)2Bθρ(ξ0)|u-lξ0,ρ|2dξ

and, more generally,

(3.5)|Xlξ0,ρ-Xl|2(Q-2)2c0QQ+2ρ2Bθρ(ξ0)|u-l|2dξ

for every horizontal affine function l:R2nRN.

Proof.

Estimate (3.4) holds, since

|Xlξ0,ρ-Xlξ0,θρ|2=(Q-2c0QQ+2(θρ)2)2|Bθρ(ξ0)(u-lξ0,ρ(ξ¯0)-Xlξ0,ρ(ξ¯-ξ¯0))(ξ¯-ξ¯0)dξ|2
(Q-2c0QQ+2(θρ)2)2Bθρ(ξ0)|u-lξ0,ρ(ξ¯0)-Xlξ0,ρ(ξ¯-ξ¯0)|2𝑑ξBθρ(ξ0)|ξ¯-ξ¯0|2𝑑ξ
=(Q-2)2c0QQ+2(θρ)2Bθρ(ξ0)|u-lξ0,ρ|2dξ,

where we have used the fact that

(3.6)Bθρ(ξ0)|ξ¯-ξ¯0|2dξ=c0Q(θρ)2Q+2

with c0 defined in (3.2).

Using again (3.6), estimate (3.5) follows. In particular, we have

|Xlξ0,ρ-Xl|2=(Q-2c0QQ+2ρ2)2|Bρ(ξ0)(u-l(ξ¯0)-Xl(ξ¯-ξ¯0))(ξ¯-ξ¯0)dξ|2
(Q-2c0QQ+2ρ2)2Bρ(ξ0)|u-l(ξ¯0)-Xl(ξ¯-ξ¯0)|2dξBρ(ξ0)|ξ¯-ξ¯0|2dξ
=(Q-2)2c0QQ+2ρ2Bθρ(ξ0)|u-l|2dξ.

Furthermore, estimate (3.5) implies that lξ0,ρ has the following quasi-minimizing property for the Lp-norm.

Lemma 3.3.

Let lξ0,ρ be the minimizer of (3.1). For any horizontal affine functions l:R2nRN and p2, we have

Bρ(ξ0)|u-lξ0,ρ|pdξc(p,Q)Bρ(ξ0)|u-l|pdξ.

Proof.

We write l(ξ¯):=l(ξ0¯)+Xl(ξ¯-ξ0¯), and we note that

Bρ(ξ0)|u-lξ0,ρ|p𝑑ξBρ(ξ0)(|u-l|+|l-lξ0,ρ|)p𝑑ξ
(3.7)3p-1(|uξ0,ρ-l(ξ0¯)|p+ρp|Xlξ0,ρ-Xl|p+Bρ(ξ0)|u-l|pdξ)

and

|uξ0,ρ-l(ξ0¯)|p=|Bρ(ξ0)(u-l(ξ0¯)-Xl(ξ¯-ξ0¯))dξ|p(Bρ(ξ0)|u-l|dξ)pBρ(ξ0)|u-l|pdξ,

where we have used the fact that Bρ(ξ0)Xl(ξ¯-ξ0¯)𝑑ξ=0 in the first equality, and Hölder’s inequality in the last inequality.

We note that the second term of (3.7) can be estimated by using (3.5). This completes the proof. ∎

4 Caccioppoli type inequality

In this section, we prove a Caccioppoli type inequality with super-quadratic natural growth conditions. Let us first present the following 𝒜-harmonic approximation lemma by Föglein [17].

Lemma 4.1.

Let λ and L be fixed positive numbers, and let n,NN with n2. Assume that for any given ε>0, there exists δ=δ(n,N,p,λ,L,ε)(0,1] with the following properties:

  1. for any 𝒜Bil(2n×N),

    (4.1)𝒜(ν,ν)λ|ν|2𝑎𝑛𝑑𝒜(ν,ν¯)L|ν||ν¯|,ν,ν¯2n×N,
  2. for any wHW1,p(Bρ(ξ0),N),

    Bρ(ξ0)(|Xw|2+γp-2|Xw|p)𝑑ξ1

    and

    |Bρ(ξ0)𝒜(Xw,Xφ)dξ|δsupBρ(ξ0)|Xφ|for all φC0(Bρ(ξ0),N).

Then there exists an A-harmonic function hC(Bρ/2(ξ0),RN) such that

Bρ/2(ξ0)(|Xh|2+γp-2|Xh|p)𝑑ξ2Q+1

and

Bρ/2(ξ0)(|w-hρ/2|2+γp-2|w-hρ/2|p)𝑑ξε.

Shores [27] established a priori estimates for weak solutions u to homogeneous sub-elliptic systems with constant coefficients in general Carnot groups (see also [4] for Carnot groups of step 2). For convenience, in order to use Shores’s estimate in the sequel, we state it in a slightly different form that follows easily from Poincaré’s inequality, that is,

(4.2)supBρ/2(ξ0)(|u|2+ρ2|Xu|2+ρ4|X2u|2)C0ρ2Bρ(ξ0)|Xu|2𝑑ξ.

Lemma 4.2.

Let uHW1,p(Ω,RN)L(Ω,RN) be a weak solution of the nonlinear sub-elliptic systems (1.2) under the assumptions (H1)(H5) with uM. Then, for any ξ0=(x1,,xn,y1,,yn,t)Ω and r1 with Bρ(ξ0)Ω, and any horizontal affine function l:R2nRN with |l(ξ¯0)|M, we have the estimate

Br/2(ξ0)(|Xu-Xl|2(1+|Xl|)2+|Xu-Xl|p(1+|Xl|)p)dξCc[Br(ξ0)(|u-l|2r2(1+|Xl|)2+|u-l|prp(1+|Xl|)p)dξ
+ω(Br(ξ0)|u-l(ξ0¯)|2dξ)+𝑽(r)+(ap|Xl|p+bp)rp],

where p is the Hölder conjugate exponent of p, that is, 1/p+1/p=1, p>2 and p<2.

Proof.

We test the sub-elliptic system (1.2) with the testing function φ=ϕp(u-l) with l=l(ξ¯0)-Xl(ξ¯-ξ¯0), where ϕC0(Br(ξ0)) is a cut-off function satisfying 0ϕ1, |Xϕ|4/r and ϕ1 on Br/2(ξ0). This yields

Br(ξ0)Aiα(ξ,u,Xu)ϕp(Xu-Xl)𝑑ξ=-pBr(ξ0)Aiα(ξ,u,Xu)ϕp-1(u-l)Xϕ𝑑ξ+Br(ξ0)fα(ξ,u,Xu)φα𝑑ξ.

Adding this to the equation

-Br(ξ0)Aiα(ξ,u,Xl)ϕp(Xu-Xl)𝑑ξ=pBR(ξ0)Aiα(ξ,u,Xl)ϕp-1(u-l)Xϕ𝑑ξ-Br(ξ0)Aiα(ξ,u,Xl)Xφ𝑑ξ

and using

0=Br(ξ0)(Aiα(,l(ξ¯0),Xl))ξ0,rXφ𝑑ξ,

we have

(4.3)Br(ξ0)[Aiα(ξ,u,Xu)-Aiα(ξ,u,Xl)]ϕp(Xu-Xl)𝑑ξ=I1+I2+I3+I4,

where

I1=pBr(ξ0)[Aiα(ξ,u,Xl)-Aiα(ξ,u,Xu)]ϕp-1(u-l)Xϕ𝑑ξ,
I2=Br(ξ0)[Aiα(ξ,l(ξ¯0),Xl)-Aiα(ξ,u,Xl)]Xφ𝑑ξ,
I3=Br(ξ0)[(Aiα(,l(ξ¯0),Xl))ξ0,r-Aiα(ξ,l(ξ¯0),Xl)]Xφ𝑑ξ,
I4=Br(ξ0)fα(ξ,u,Xu)φα𝑑ξ.

Due to the alternative form (1.7) of the uniformly elliptic condition (H2), the left-hand side of (4.3) can be estimated as follows:

Br(ξ0)[Aiα(ξ,u,Xu)-Aiα(ξ,u,Xl)]ϕp(Xu-Xl)𝑑ξ
(4.4)λ0Br(ξ0)ϕp[(1+|Xl|)p-2|Xu-Xl|2+|Xu-Xl|p]𝑑ξ.

We now estimate the terms I1I4 of the right-hand side. For ϵ>0 to be fixed later, using (H1) and Young’s inequality we have

I1Br(ξ0)pϕp-1|01DPAiα(ξ,u,Xl+t(Xu-Xl))dt(Xu-Xl)||Xϕ||u-l|dξ
pLBr(ξ0)ϕp-1(1+|Xl|+|Xu-Xl|)p-2|Xu-Xl||Xϕ||u-l|𝑑ξ
ϵBr(ξ0)ϕp[(1+|Xl|)p-2|Xu-Xl|2+|Xu-Xl|p]𝑑ξ
(4.5)+C(p,L,ϵ)Br(ξ0)[(1+|Xl|)p-2|u-lr|2+|u-lr|p]𝑑ξ.

Noting that |Xφ|C(p)(ϕ|Xu-Xl|+|u-l|/r), and using the continuity condition (1.3) and Young’s inequality, we get

I2C(p)LBr(ξ0)ω(|u-l(ξ¯0)|2)(1+|Xl|)p-1(ϕ|Xu-Xl|+|u-l|r)𝑑ξ
ϵBr(ξ0)ϕp|Xu-Xl|p𝑑ξ+Br(ξ0)|u-lr|p𝑑ξ+C(p,L,ϵ)Br(ξ0)ωp(|u-l(ξ¯0)|2)(1+|Xl|)p
(4.6)ϵBr(ξ0)ϕp|Xu-Xl|pdξ+Br(ξ0)|u-lr|pdξ+C(p,L,ϵ)(1+|Xl|)pω(Br(ξ0)|u-l(ξ¯0)|2dξ),

where we have used ωpω with 1/p+1/p=1, and Jensen’s inequality in the last inequality.

We next estimate I3. Using the VMO-condition (H4), |Xφ|C(p)(ϕ|Xu-Xl|+|u-l|/r), and Young’s inequality, we have

I3C(p)(1+|Xl|)p-1Br(ξ0)𝐯ξ0(ξ,r)(ϕ|Xu-Xl|+|u-l|r)
ϵBr(ξ0)ϕp|Xu-Xl|p𝑑ξ+Br(ξ0)|u-lr|p𝑑ξ+C(p,ϵ)(1+|Xl|)pBr(ξ0)𝐯ξ0p(ξ,r)𝑑ξ
(4.7)ϵBr(ξ0)ϕp|Xu-Xl|p𝑑ξ+Br(ξ0)|u-lr|p𝑑ξ+C(p,L,ϵ)(1+|Xl|)p𝐕(r),

where we have used the assumption 𝐯ξ02L. Finally, I4 can be estimated using assumption (H5) and Young’s inequality for ϵ>0 to be fixed later. This yields

I4Br(ξ0)(a|Xu|p+b)ϕp|u-l|𝑑ξ
aBr(ξ0)(|Xu-Xl|+|Xl|)pϕp|u-l|𝑑ξ+bBr(ξ0)ϕ|u-l|𝑑ξ
aBr(ξ0)ϕp[(1+ϵ)|Xu-Xl|p+(1+ϵ-1)|Xl|p]|u-l|𝑑ξ+bBr(ξ0)ϕr|u-lr|𝑑ξ
a(1+ϵ)(2M+r|Xl|)Br(ξ0)ϕp|Xu-Xl|p𝑑ξ+ϵ[a(1+1/ϵ)|Xl|pr]p+C(ϵ)Br(ξ0)|u-lr|p𝑑ξ+ϵ(br)p
a(1+ϵ)(2M+r|Xl|)Br(ξ0)ϕp|Xu-Xl|p𝑑ξ+C(ϵ)Br(ξ0)|u-lr|p𝑑ξ
(4.8)+ϵ(1+|Xl|)prp[ap(1+1/ϵ)p|Xl|p+bp].

Joining estimates (4.4)–(4.8) with (4.3), we obtain

ΛBr(ξ0)ϕp[(1+|Xl|)p-2|Xu-Xl|2+|Xu-Xl|p]𝑑ξ
C(p,L,ϵ,ϵ)Br(ξ0)[(1+|Xl|)p-2|u-lr|2+|u-lr|p]𝑑ξ
   +C(p,L,ϵ)(1+|Xl|)p[ω(Br(ξ0)|u-l(ξ¯0)|2𝑑ξ)+𝐕(r)]
(4.9)   +ϵ(1+|Xl|)prp[ap(1+1/ϵ)p|Xl|p+bp],

where Λ=λ0-a(1+ϵ)(2M+r|Xl|)-3ϵ. Dividing (4.9) by (1+|Xl|)p, we arrive at the desired Caccioppoli type inequality by choosing suitable ϵ and ϵ such that Λ>0. ∎

5 Proofs of Theorems 1.1 and 1.2

For sake of simplicity, we set

Φ(ξ0,r,l):=Br/2(ξ0)(|Xu-Xl|2(1+|Xl|)2+|Xu-Xl|p(1+|Xl|)p)dξ,
Ψ(ξ0,r,l):=Br(ξ0)(|u-l|2r2(1+|Xl|)2+|u-l|prp(1+|Xl|)p)dξ

and

Ψ*(ξ0,r,l):=Ψ(ξ0,r,l)+ω(Br(ξ0)|u-l(ξ0¯)|2𝑑ξ)+𝐕(r)+(a|Xl|+b)prp.

In the sequel, when the choice of ξ0 or l is clear, we frequently write Φ(r,l) or Φ(r), respectively, as a replacement of Φ(ξ0,r,l). To apply the 𝒜-harmonic approximation lemma, we need to establish the following lemma, which provides a linearization strategy for nonlinear sub-elliptic systems.

Lemma 5.1.

Under the assumptions of Theorem 1.1 and the assumption B2ρ(ξ0)Ω with ρρ0, for an arbitrary horizontal function l(ξ¯):R2nRN, we define

𝒜:=(DPAiα(,l(ξ¯0),Xl))ξ0,ρ(1+|Xl|)p-1𝑎𝑛𝑑w~:=u-l(1+|Xl|).

Then w~ is approximately A-harmonic in the sense that

Bρ(ξ0)𝒜(Xw~,Xφ)dξC1[μ1/2(Ψ*(2ρ))Ψ*(2ρ)+Ψ*(2ρ)+ρ(a|Xl|p+b)]supBρ(ξ0)|Xφ|,

where we have used the more compact notation Ψ*(2ρ):=Ψ*(ξ0,2ρ,l), and C1 is a positive constant.

Proof.

Without loss of generality, we may also assume that supBρ(ξ0)|Xφ|1. We denote

v:=u-l(ξ¯0)-Xl(ξ¯-ξ¯0).

Using the weak formulation of our sub-elliptic system (1.2) and noting that (Aiα(,l(ξ¯0),Xl))ξ0,ρ is constant, we have

(5.1)(1+|Xl|)p-1Bρ(ξ0)𝒜(Xv,Xφ)𝑑ξI1+I2+I3+I4,

where

I1=Bρ(ξ0)[01((DPAiα(,l(ξ¯0),Xl))ξ0,ρ-(DPAiα(,l(ξ¯0),Xl+tXv))ξ0,ρ)Xvdt]dξsupBρ(ξ0)|Xφ|,
I2=Bρ(ξ0)[(Aiα(,l(ξ¯0),Xu))ξ0,ρ-Aiα(ξ,l(ξ¯0),Xu)]supBρ(ξ0)|Xφ|,
I3=Bρ(ξ0)[Aiα(ξ,l(ξ¯0),Xu)-Aiα(ξ,u,Xu)]dξsupBρ(ξ0)|Xφ|,
I4=Bρ(ξ0)fα(ξ,u,Xu)φα𝑑ξ.

Using assumption (1.4), we first note that

01[(DPAiα(,l(ξ¯0),Xl))ξ0,ρ-(DPAiα(,l(ξ¯0),Xl+tXv))ξ0,ρ]𝑑t
01Bρ(ξ0)[(DPAiα(ζ,l(ξ¯0),Xl))-(DPAiα(ζ,l(ξ¯0),Xl+tXv))]𝑑t
C(L)μ(Xu-Xl1+|Xl|)(1+|Xl|+|Xu-Xl|)p-2.

This leads us to estimate the term I1 as follows:

I1C(L,p)(1+|Xl|)p-1Bρ(ξ0)μ(Xu-Xl1+|Xl|)[|Xu-Xl|1+|Xl|+|Xu-Xl|p-1(1+|Xl|)p-1]𝑑ξ
C(L,p)(1+|Xl|)p-1[Bρ(ξ0)μ2(Xu-Xl1+|Xl|)𝑑ξ]1/2[Bρ(ξ0)|Xu-Xl|2(1+|Xl|)2𝑑ξ]1/2
+C(L,p)(1+|Xl|)p-1[Bρ(ξ0)μp(Xu-Xl1+|Xl|)𝑑ξ]1/p[Bρ(ξ0)|Xu-Xl|p(1+|Xl|)p𝑑ξ]1/p
C(L,p)(1+|Xl|)p-1[μ1/2(Φ(ρ))Φ1/2(ρ)+μ1/p(Φ(ρ))Φ1/p(ρ)]
(5.2)C(L,p)(1+|Xl|)p-1[μ1/2(Φ(ρ))Φ1/2(ρ)+Φ(ρ)],

where in the second last inequality we have used the fact that μ2,μpμ as μ1, Jensen’s inequality and

Bρ(ξ0)Xu-Xl1+|Xl|𝑑ξΦ1/2(ρ),

which in turn holds by Hölder’s inequality. For the last inequality, we have used the fact that

a1/pb1/p=(a1/pb1/p)(bp-2/p)a1/2b1/2+b,

by Young’s inequality.

The term I2 can be estimated by the VMO-condition (1.5), Young’s inequality and the bound 𝐯02L as follows:

I2Bρ(ξ0)𝐯0(ξ,ρ)(1+|Xl|+|Xu-Xl|)p-1𝑑ξ
C(p)(1+|Xl|)p-1[Bρ(ξ0)𝐯0(ξ,ρ)𝑑ξ+Bρ(ξ0)𝐯0p(ξ,ρ)𝑑ξ+Bρ(ξ0)|Xu-Xl|p(1+|Xl|)p𝑑ξ]
C(L,p)(1+|Xl|)p-1[𝐕(ρ)+Bρ(ξ0)|Xu-Xl|p(1+|Xl|)p𝑑ξ]
(5.3)C(L,p)(1+|Xl|)p-1[Ψ*(ρ)+Φ(ρ)].

Similarly, we estimate the term I3 by the continuity condition (1.3), Young’s inequality, the bound ω1 and Jensen’s inequality. This leads us to

I3LBρ(ξ0)ω(|u-l(ξ¯0)|2)(1+|Xl|+|Xu-Xl|)p-1𝑑ξ
C(L,p)(1+|Xl|)p-1[Bρ(ξ0)ω(|u-l(ξ¯0)|2)𝑑ξ+Bρ(ξ0)ωp(|u-l(ξ¯0)|2)𝑑ξ+Bρ(ξ0)|Xu-Xl|p(1+|Xl|)p𝑑ξ]
C(L,p)(1+|Xl|)p-1[ω(Bρ(ξ0)|u-l(ξ¯0)|2𝑑ξ)+Bρ(ξ0)|Xu-Xl|p(1+|Xl|)p𝑑ξ]
(5.4)C(L,p)(1+|Xl|)p-1[Ψ*(ρ)+Φ(ρ)].

Finally, we estimate the last term I4 by the growth condition (H5) and the assumption supBρ(ξ0)|φ|ρ1 as follows:

I4Bρ(ξ0)ρ[a(|Xl|+|Xu-Xl|)p+b]𝑑ξ
C(p)[a(1+|Xl|)pBρ(ξ0)|Xu-Xl|p(1+|Xl|)p+ρ|Xl|pa+ρb]dξ
(5.5)C(p)a(1+|Xl|)p[Φ(ρ)+ρ(a|Xl|p+b)].

Combining (5.1) with estimates (5.2)–(5.5), dividing by (1+|Xl|)p, and recalling the definition of w~, we have

Bρ(ξ0)𝒜(Xw~,Xφ)dξC(L,p)[μ1/2(Φ(ρ)|)Φ1/2(ρ)+Ψ*(ρ)+Φ(ρ)+ρ(a|Xl|p+b)]
C1[μ1/2(Ψ*(2ρ))Ψ*1/2(2ρ)+Ψ*(2ρ)+ρ(a|Xl|p+b)],

where we have used the Caccioppoli type inequality Φ(ρ)CcΨ*(2ρ) and the concavity of μ to have μ(cs)cμ(s) for c1. This yields the claim with C1=C(L,p)Cc. ∎

The strategy of the proof is to approximate the given solution by 𝒜-harmonic functions, for which suitable decay estimates are available from the classical theory. Now we are in the position to establish the excess improvement.

Lemma 5.2.

Suppose that the conditions of Theorem 1.1 are satisfied and consider a ball Br(ξ0)Ω with rρ0. Let θ(0,1/8] be arbitrary and impose the following smallness conditions on the excess:

  1. [μ1/2(Ψ*(ξ0,r,lξ0,r))+Ψ*(ξ0,r,lξ0,r)]δ/2 with the constant δ=δ(Q,N,p,L,λ,θQ+p+2)(0,1] from the 𝒜-harmonic approximation lemma (Lemma 4.1),

  2. Ψ(ξ0,r,lξ0,r)c0QθQ+24(Q-2)2(Q+2),

  3. γ:=[Ψ*p/2(ξ0,r,lξ0,r)+(δ/2)-pρp(a|Xlξ0,r|p+b)p]1/p1.

Then we have the excess improvement estimate

Ψ(ξ0,θr,lξ0,r)C4θ2Ψ*(ξ0,r,lξ0,r).

Proof.

We re-scale the map

w=u-lξ0,rC2γ(1+|Xlξ0,r|)withlξ0,r=uξ0,r+Xlξ0,r(ξ¯-ξ¯0),

where C2=max{Cc,C1,1}. We claim that w satisfies the assumptions of the 𝒜-harmonic approximation lemma.

First, for our choice of the bilinear form, note that

𝒜:=(DPAiα(,lξ0,r(ξ0),Xlξ0,r))ξ0,ρ(1+|Xlξ0,r|)p-1.

Condition (4.1) is valid due to assumptions (H1)(H2).

Next, we check, by Lemma 5.1 with ρ=r/2 and llξ0,r, that the map w is approximately 𝒜-harmonic in the sense that

Br/2(ξ0)𝒜(Xw,Xφ)dξC1C2[μ1/2(Ψ*(ξ0,r,lξ0,r))+Ψ*(ξ0,r,lξ0,r)+δ2]supBr/2(ξ0)|Xφ|
(5.6)δsupBr/2(ξ0)|Xφ|

for all φC0(Br/2(ξ0),N), with the constant δ determined by Lemma 4.1 for the choice ε=θQ+p+2. Moreover, w satisfies the following energy bound:

Br/2(ξ0)(|Xw|2+γp-2|Xw|p)dξ=Br/2(ξ0)|Xu-Xlξ0,r|2c22(1+|Xlξ0,r|)2γ2+γp-2|Xu-Xlξ0,r|pc2p(1+|Xlξ0,r|)pγpdξ
Φ(r/2,lξ0,r)C22γ2
CcΨ*(r,lξ0,r)C22Ψ*(r,lξ0,r)
1.

So we are in the situation of Lemma 4.1 with ε=θQ+p+2 and ρ=r/2. The lemma ensures the existence of an 𝒜-harmonic map hC(Br/4,N) such that

(5.7)Br/4(ξ0)(|Xh|2+γp-2|Xh|p)𝑑ξ2Q+1

and

Br/4(ξ0)(|w-hr/4|2+γp-2|w-hr/4|p)dξθQ+p+2.

Since h is 𝒜-harmonic, from (4.2) we have the estimate

r2supBr/8(ξ0)|X2h|2C0Br/4(ξ0)|Xh|2dξ.

For p>2, by Hölder’s inequality, this yields

γp-2rpsupBr/8(ξ0)|X2h|pγp-2(r2supBr/8(ξ0)X2h|2)p/2
γp-2C0p/2(Br/4(ξ0)|Xh|2dξ)p/2
C0p/2γp-2Br/4(ξ0)|Xh|pdξ.

From these estimates we infer the following decay estimate using in turn the Poincaré type inequality (3.3) and (5.7) for s=2 and s=p:

γs-2Bθr(ξ0)|h-hξ0,θr-(Xh)ξ0,θr(ξ¯-ξ¯0)θr|sdξγs-2CpsBθr(ξ0)|Xh-(Xh)ξ0,θr|sdξ
γs-2Cp2s(θr)sBθr(ξ0)|X2h|sdξ
Cp2sγs-2θsrssupBr/8(ξ0)|X2h|s
C3θsγs-2Br/4(ξ0)|Xh|sdξ
C32Q+1θs

with C3=max{C0Cp4,C0p/2Cp2p}, where θ(0,1/8] can be chosen arbitrary. Abbreviating

l(h)(ξ):=hξ0,θr+(Xh)ξ0,θr(ξ¯-ξ¯0),

we conclude

γs-2Bθr(ξ0)|w-l(h)(ξ)θr|s𝑑ξCγs-2Bθr(ξ0)|w-hθr|s𝑑ξ+Cγs-2Bθr(ξ0)|h-l(h)(ξ)θr|s𝑑ξθs
C(4θ)-Q-sθQ+p+2+C32Q+1θs
Cθ2.

Scaling back to u, we infer

Bθr(ξ0)|u-lξ0,r-C2γ(1+|Xlξ0,r|)l(h)(ξ)θr|s𝑑ξCγ2-sC2sγs(1+|Xlξ0,r|)sθ2
CC2sθ2(1+|Xlξ0,r|)sΨ*(r),

where we have used the definition of γ from (iii) with |Xl| being constant.

Bθr(ξ0)|u-lξ0,θrθr|s𝑑ξBθr(ξ0)|u-lξ0,r-C2γ(1+|Xlξ0,r|)l(h)(ξ)θr|s𝑑ξ
CC2sθ2(1+|Xlξ0,r|)sΨ*(r).

Here, we want to replace the term |Xlξ0,r| on the right-hand side by |Xlξ0,θr|. For this we estimate

|Xlξ0,r-Xlξ0,θr|2(Q-2)2c0Q(Q+2)(θr)2Bθr(ξ0)|u-lξ0,r|2dξ
(Q-2)2c0Q(Q+2)θQ+2Br(ξ0)|u-lξ0,rr2|2𝑑ξ
(Q-2)2c0Q(Q+2)θQ+2(1+|Xlξ0,r|)2Ψ(r)
14(1+|Xlξ0,r|)2,

by assumption (ii). This yields

1+|Xlξ0,r|1+|Xlξ0,θr|+|Xlξ0,r-Xlξ0,θr|1+|Xlξ0,θr|+12(1+|Xlξ0,r|),

and, after reabsorbing the last term from the right-hand side on the left, we have

1+|Xlξ0,r|2(1+|Xlξ0,θr|).

So we deduce

Bθr(ξ0)|u-lξ0,θrθr|s𝑑ξ2CC2sθ2(1+|Xlξ0,θr|)sΨ*(r)for s{2,p}.

Dividing by (1+|Xlξ0,θr|)s and adding the corresponding terms for s=2 and s=p, we deduce the claim, that is,

Ψ(ξ0,θr,lξ0,r)C4θ2Ψ*(ξ0,r,lξ0,r),

with C4=2CC2s. ∎

We fix an arbitrary Hölder exponent γ(0,1) and define the Campanato type excess

Cγ(ξ0,ρ):=ρ-2γBρ(ξ0)|u-uξ0,ρ|2dξ.

In the following lemma, we iterate the excess improvement estimate from Lemma 5.2.

Lemma 5.3.

Suppose that the assumptions of Theorem 1.1 are satisfied. For every γ(0,1), there exists constants ε*,κ*,ρ*>0 and θ(0,1/8], all depending at most on Q,N,λ,L,γ,ρ0,μ(),ω(),V(),a,b and M, such that

(A0)Ψ(ξ0,r,lξ0,r)<ε*𝑎𝑛𝑑Cγ(ξ0,r)<κ*

for r(0,ρ*) with Br(ξ0)Ω. Then

(Ak)Ψ(ξ0,θkr,lξ0,θkr)<ε*𝑎𝑛𝑑Cγ(ξ0,θkr)<κ*for every k.

Proof.

We begin by choosing the constants. First, we let

(5.8)θ:=min{[c0Q16(Q-2)2(Q+2)]1/(2-2α),12C4}18

with the constant C4 determined in Lemma 5.2. In particular, note that the choice of θ>0 fixes the constant δ=δ(Q,N,p,λ,L,θQ+p+2) from Lemma 4.1. Next, we fix an ε*>0 sufficiently small to ensure

(5.9)ε*c0QθQ+216(Q-2)2(Q+2)andμ1/2(4ε*)+3ε*δ2.

Then we choose κ*>0 so small that ω(κ*)<ε*. Finally, we fix ρ*(0,1) small enough to guarantee

ρ*{ρ0,κ*1/2(1-γ),1},V(ρ*)<ε*and(δ2)-1[a(Q-2)1/2κ*(Q+2)c0Q+b](θkr)γε*<1.

Now we prove assertion (Ak) by induction. We assume that we have already established (Ak) up to some k, we begin by proving the first part of assertion (Ak+1), that is, the one concerning Ψ(θk+1r,lξ0,θk+1r). First, using with l=uξ0,θkr in (3.5), we have

|Xlξ0,θkr|2(Q-2)2(Q+2)c0Q(θkr)2Bθkr(ξ0)|u-uξ0,θkr|2dξ
=(Q-2)2(Q+2)c0Q(θkr)2(γ-1)Cγ(ξ0,θkr)
(Q-2)2(Q+2)c0Q(θkr)2(γ-1)κ*.

By assumption (Ak), the choice of κ* and ε*, and the above estimate, we infer

Ψ*(ξ0,θkr,lξ0,θkr)Ψ(ξ0,θkr,lξ0,θkr)+ω(Cγ(ξ0,θkr))+V(θkr)+(a|Xlξ0,θkr|+b)p(θkr)p
ε*+ω(κ*)+V(ρ*)+[a(Q-2)1/2κ*(Q+2)c0Q+b]p(θkr)pγ
4ε*.

Here, we have used the fact that (θkr)γ-11. Now it is easy to check that our choice of ε* implies that the smallness condition assumptions (i)–(iii) in Lemma 5.2 are satisfied on the level θkr, that is, we have

Ψ1/2(ξ0,θkr,lξ0,θkr)+μ1/2(Ψ1/2(ξ0,θkr,lξ0,θkr))2ε*+μ1/2(4ε*)<δ2

and

Ψ1/2(ξ0,θkr,lξ0,θkr)<ε*θQ+2c0Q4(Q-2)2(Q+2)<1.

Furthermore, we also have the smallness condition (iii), that is,

γ(θkρ):=[Ψp/2(θkρ)+(δ2)-p(θkρ)p(a|Xlξ0,θkρ|+b)p]1/p2ε+ε3εδ21.

Thus, we can apply Lemma 5.2 with the radius θkr instead of r, which yields

Ψ(ξ0,θk+1r,lξ0,θk+1r)C4θ2Ψ*(ξ0,θkr,lξ0,θkr)4C4θ2ε*ε*.

By the choice of θ in (5.8). So we establish the first part of assertion (Ak+1) and it remains to prove the second one, that is, the one concerning Cγ(ξ0,θk+1r). For this, we first estimate

(θkr)-2Bθkr(ξ0)|u-lξ0,θkr|2dξ=(1+|Xlξ0,θkr|)2Ψ(ξ0,θkr,lξ0,θkr)2ε*(1+|Xlξ0,θkr|2),

where in the last inequality we used assumption (Ak). Noting that

lξ0,θkr=uξ0,θkr+lξ0,θkr(ξ1-ξ01),

we have

Cγ(ξ0,θk+1r)=(θk+1r)-2γBθk+1r(ξ0)|u-uξ0,θk+1r|2𝑑ξ
(θk+1r)-2γBθk+1r(ξ0)|u-uξ0,θkr|2dξ
2(θk+1r)-2γ[Bθk+1r(ξ0)|u-lξ0,θkr|2dξ+|Xlξ0,θkr|2(θk+1r)2]
2(θk+1r)-2α[θ-QBθkr(ξ0)|u-lξ0,θkr|2dξ+|Xlξ0,θkr|2(θk+1r)2]
4(θkr)2(1-α)[θ-Q-2αε*+|Xlξ0,θkr|2(θ-Q-2αε*+θ2(1-α))].

Using (5.9) and recalling the choice of ρ*, ε* and θ, we deduce

Cγ(ξ0,θk+1r)4ρ*2(1-γ)θ-Q-2γε*+4(Q-2)2(Q+2)c0Q(θ-Q-2γε*+θ2(1-γ))κ*14κ*+14κ*+14κ*<κ*.

This proves the second part of the assertion (Ak+1) and completes the proof of the lemma. ∎

Proof of Theorem 1.1.

By Lebesgue’s differentiation theorem, we have |Σ1Σ2|=0. So it suffices to show that every point ξ0Ω(Σ1Σ2) is regular. To this end, we first note that for every 0<ρ<dist(ξ0,Ω), the bound (3.5) with l=uξ0,ρ+(Xu)ξ0,ρ(ξ¯-ξ¯0), and the Poincaré inequality (3.3) imply

|Xlξ0,ρ-(Xu)ξ0,ρ|(Q-2)2(Q+2)c0Qρ2Bρ(ξ0)|u-uξ0,ρ-(Xu)ξ0,ρ(ξ¯-ξ¯0)|2𝑑ξ
Cp(Q-2)2(Q+2)c0QBρ(ξ0)|Xu-(Xu)ξ0,ρ|2𝑑ξ,

and then, using again the Poincaré inequality (3.3), we obtain

Ψ(ξ0,ρ,lξ0,ρ)ρ-2Bρ(ξ0)|u-lξ0,ρ|2dξ+ρ-pBρ(ξ0)|u-lξ0,ρ|pdξ
(5.10)Cp2Bρ(ξ0)|Xu-Xlξ0,ρ|2dξ+CppBρ(ξ0)|Xu-Xlξ0,ρ|pdξ.

Moreover, for any γ(0,1) and ρ1,

Cγ(ξ0,ρ)=ρ-2γBρ(ξ0)|u-(u)ξ0,ρ|2dξ
ρ2-2γCpBρ(ξ0)|Xu|2dξ
(5.11)2ρ2-2γCpBρ(ξ0)|Xu-(Xu)ξ0,ρ|2dξ+2ρ2-2γCp|(Xu)ξ0,ρ|2.

Keeping in mind the definitions of Σ1 and Σ2, estimates (5.10) and (5.11) imply the existence of a radius 0<ρ<min{ρ*,dist(ξ0,Ω)} such that

Ψ(ξ0,ρ,lξ0,ρ)<ε*andCγ(ξ0,ρ)<κ*

for the constants κ*,ε*,ρ*>0 determined in Lemma 5.3. Using the absolute continuity of the integral, there exists a neighborhood UΩ of ξ0 with

Ψ(ξ,ρ,lξ0,ρ)<ε*andCγ(ξ,ρ)<κ*

for all ξU. Using Lemma 5.3 in any point ξU yields

Ψ(ξ,θkρ,lξ0,θkρ)<ε*andCγ(ξ,θkρ)<κ*

for all ξU and all k. This implies

supξU,σ(0,ρ)σ-2γBσ(ξ)|u-(u)ξ,ρ|2dη=supξU,σ(0,ρ)Cγ(ξ,σ)<θ-Q-2γκ*<,

and hence uC0,γ(U,N), by Campanato’s characterization of Hölder continuous functions. ∎

Proof of Theorem 1.2.

Analogously to (4.3), we have

Br(ξ0)[Aiα(ξ,u,Xu)-Aiα(ξ,u,Xl)]ϕp(Xu-Xl)𝑑ξ=I1+I2+I3+I^4,

where I1, I2, I3 are the same terms as those in (4.3). We will just estimate the different term

I^4=Br(ξ0)fα(ξ,u,Xu)φα𝑑ξ.

Employing Hölder’s inequality and Young’s inequality, we deduce

I^4Br(ξ0)(a|Xu|p-ε+b)ϕp|u-l|𝑑ξ
a[Br(ξ0)|Xu-Xl|pϕpdξ](p-ε)/p[Br(ξ0)|u-l|p/εdξ]ε/p+Br(ξ0)(b+a|Xl|p-ε)|u-l|ϕdξ
a(2M+r|Xl|)1-ε[Br(ξ0)|Xu-Xl|pϕpdξ](p-ε)/p[Br(ξ0)|u-l|pdξ]ε/p
+C(ε1)Br(ξ0)|u-lr|p𝑑ξ+ε1(br)p+ε1(a|Xl|p-εr)p
aε2(2M+r|Xl|)1-εBr(ξ0)|Xu-Xl|pϕpdξ+C(ε1,ε2)Br(ξ0)|u-lr|pdξ+ε1(1+|Xl|)prp(ap|Xl|p+bp),

where we have used the inequality |u-l|(2M+r|Xl|). Then we also obtain the Caccioppoli type inequality in Lemma 4.2, and deduce Theorem 1.2 just by following the procedure of the proof of Theorem 1.1. ∎

Award Identifier / Grant number: 11201081

Award Identifier / Grant number: 20142BAB201001

Award Identifier / Grant number: S2016ZRMSB0350

Funding statement: The research of the first author is supported by the National Natural Science Foundation of China (no. 11201081) and the Natural Science Foundation of Jiangxi Province (no. 20142BAB201001 and no. S2016ZRMSB0350)

Acknowledgements

The first author would like to express his gratitude and appreciation to the China Scholarship Council for their support, and to Professor J. Manfredi and the Department of Mathematics for their hospitality and assistance at the University of Pittsburgh.

References

[1] V. Bögelein, F. Duzaar, J. Habermann and C. Scheven, Partial Hölder continuity for discontinuous elliptic problems with VMO-coefficients, Proc. Lond. Math. Soc. (3) 103 (2011), 371–404. 10.1112/plms/pdr009Suche in Google Scholar

[2] L. Capogna, Regularity of quasi-linear equations in the Heisenberg group, Comm. Pure Appl. Math. 50 (1997), 867–889. 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO;2-3Suche in Google Scholar

[3] L. Capogna, Regularity for quasilinear equation and 1-quasiconformal maps in Carnot groups, Math. Ann. 313 (1999), 263–295. 10.1007/s002080050261Suche in Google Scholar

[4] L. Capogna and N. Garofalo, Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type, J. Eur. Math. Soc. (JEMS) 5 (2003), 1–40. 10.1007/s100970200043Suche in Google Scholar

[5] S. Chen and Z. Tan, The method of A-harmonic approximation and optimal interior partial regularity for nonlinear elliptic systems under the controllable growth condition, J. Math. Anal. Appl. 335 (2007), 20–42. 10.1016/j.jmaa.2007.01.042Suche in Google Scholar

[6] Y. Chen and L. Wu, Second Order Elliptic Equations and Elliptic Systems, Science Press, Beijing, 2003. Suche in Google Scholar

[7] E. De Giorgi, Un esempio di estremali discontinue per un problem variazionale di upo ellitico, Boll. Unione Mat. Ital. 4 (1968), 135–137. Suche in Google Scholar

[8] A. Domokos, Differentiability of solutions for the non-degenerate p-Laplacian in the Heisenberg group, J. Differential Equations 204 (2004), 439–470. 10.1016/j.jde.2004.05.009Suche in Google Scholar

[9] A. Domokos, On the regularity of p-harmonic functions in the Heisenberg group, Ph.D. thesis, University of Pittsburgh, Pittsburgh, 2004. Suche in Google Scholar

[10] A. Domokos, On the regularity of subelliptic p-harmonic functions in Carnot groups, Nonlinear Anal. 69 (2008), 1744–1756. 10.1016/j.na.2007.07.020Suche in Google Scholar

[11] F. Duzaar and A. Gastel, Nonlinear elliptic systems with Dini continuous coefficients, Arch. Math. (Basel) 78 (2002), 58–73. 10.1007/s00013-002-8217-1Suche in Google Scholar

[12] F. Duzaar, A. Gastel and G. Mingione, Elliptic systems, singular sets and Dini continuity, Comm. Partial Differential Equations 29 (2004), 1215–1240. 10.1081/PDE-200033734Suche in Google Scholar

[13] F. Duzaar and J. F. Grotowski, Partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation, Manuscripta Math. 103 (2000), 267–298. 10.1007/s002290070007Suche in Google Scholar

[14] F. Duzaar and G. Mingione, Regularity for degenerate elliptic problems via p-harmonic approximation, Ann. Inst. H. Poincaré Anal. Non Linèaire 21 (2004), 735–766. 10.1016/j.anihpc.2003.09.003Suche in Google Scholar

[15] F. Duzaar and G. Mingione, The p-harmonic approximation and the regularity of p-harmonic maps, Calc. Var. Partial Differention Equations 20 (2004), 235–256. 10.1007/s00526-003-0233-xSuche in Google Scholar

[16] F. Duzaar and K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. reine angew. Math. 546 (2002), 73–138. 10.1515/crll.2002.046Suche in Google Scholar

[17] A. Föglein, Partial regularity results for sub-elliptic systems in the Heisenberg group, Calc. Var. Partial Differential Equations 32 (2008), 25–51. 10.1007/s00526-007-0127-4Suche in Google Scholar

[18] D. Gao, P. Niu and J. Wang, Partial regularity for degenerate subelliptic systems associated with Hörmander’s vector fields, Nonlinear Anal. 73 (2010), 3209–3223. 10.1016/j.na.2010.07.001Suche in Google Scholar

[19] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983. 10.1515/9781400881628Suche in Google Scholar

[20] M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linèaire 3 (1986), 185–208. 10.1016/S0294-1449(16)30385-7Suche in Google Scholar

[21] T. Kanazawa, Partial regularity for elliptic systems with VMO-coefficients, Riv. Math. Univ. Parma (N.S.) 5 (2014), 311–333. Suche in Google Scholar

[22] G. Lu, The sharp Poincaré inequality for free vector fields: An endpoint result, Rev. Mat. Iberoam. 10 (1994), 453–466. 10.4171/RMI/158Suche in Google Scholar

[23] J. Manfredi and G. Mingione, Regularity results for quasilinear elliptic equations in the Heisenberg group, Math. Ann. 339 (2007), 485–544. 10.1007/s00208-007-0121-3Suche in Google Scholar

[24] G. Mingione, A. Zatorska-Goldstein and X. Zhong, Gradient regularity for elliptic equations in the Heisenberg group, Adv. Math. 222 (2009), 62–129. 10.1016/j.aim.2009.03.016Suche in Google Scholar

[25] Y. Qiu, Optimal partial regularity of second order nonlinear elliptic systems with Dini continuous coefficients for the superquadratic case, Nonlinear Anal. 75 (2012), 3574–3590. 10.1016/j.na.2012.01.016Suche in Google Scholar

[26] M. Ragusa and A. Tachikawa, Regularity of minimizers of some variational integrals with discontinuity, Z. Anal. Anwend. 27 (2008), 469–482. 10.4171/ZAA/1366Suche in Google Scholar

[27] E. Shores, Regularity theory for weak solutions of systems in Carnot groups, Ph.D. thesis, University of Arkansas, Fayetteville, 2005. Suche in Google Scholar

[28] J. Wang, D. Liao, S. Gao and Y. Yu, Optimal partial regularity for sub-elliptic systems with Dini continuous coefficients under the superquadratic natural growth, Nonlinear Anal. 114 (2015), 13–25. 10.1016/j.na.2014.10.028Suche in Google Scholar

[29] J. Wang and P. Niu, Optimal partial regularity for weak solutions of nonlinear sub-elliptic systems in Carnot groups, Nonlinear Anal. 72 (2010), 4162–4187. 10.1016/j.na.2010.01.048Suche in Google Scholar

[30] C. Xu and C. Zuily, Higher interior regularity for quasilinear subelliptic systems, Calc. Var. Partial Differential Equations 5 (1997), 323–343. 10.1007/s005260050069Suche in Google Scholar

[31] S. Zheng, Partial regularity for quasi-linear elliptic systems with VMO coefficients under the natural growth, Chinese Ann. Math. Ser. A 29 (2008), 49–58. Suche in Google Scholar

[32] S. Zheng and Z. Feng, Regularity of subelliptic p-harmonic systems with subcritical growth in Carnot group, J. Differential Equations 258 (2015), 2471–2494. 10.1016/j.jde.2014.12.020Suche in Google Scholar

Received: 2015-12-31
Revised: 2016-4-6
Accepted: 2016-5-4
Published Online: 2016-7-2
Published in Print: 2018-2-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Heruntergeladen am 5.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/anona-2015-0182/html
Button zum nach oben scrollen