Startseite Classes of maps with upper semicontinuous KKM-type selections: Coincidence theory and minimax inequalities
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Classes of maps with upper semicontinuous KKM-type selections: Coincidence theory and minimax inequalities

  • Donal O’Regan EMAIL logo
Veröffentlicht/Copyright: 28. Juni 2025
Analysis
Aus der Zeitschrift Analysis Band 45 Heft 3

Abstract

In this paper we present some new general coincidence theory for maps with upper semicontinuous selections and then we use our results to generate some new minimax inequalities.

MSC 2020: 47H10; 54H25

References

[1] R. P. Agarwal and D. O’Regan, Fixed point theory for maps with lower semicontinuous selections and equilibrium theory for abstract economies, J. Nonlinear Convex Anal. 2 (2001), 31–46. Suche in Google Scholar

[2] R. P. Agarwal and D. O’Regan, Coincidence theory for 𝒰 c κ maps and inequalities, J. Nonlinear Convex Anal. 5 (2004), no. 2, 265–274. Suche in Google Scholar

[3] R. P. Agarwal, D. O’Regan and S. Park, Fixed point theory for multimaps in extension type spaces, J. Korean Math. Soc. 39 (2002), no. 4, 579–591. 10.4134/JKMS.2002.39.4.579Suche in Google Scholar

[4] C. D. Aliprantis and K. C. Border, Infinite-Dimensional Analysis, Stud. Econom. Theory 4, Springer, Berlin, 1994. 10.1007/978-3-662-03004-2Suche in Google Scholar

[5] H. Ben-El-Mechaiekh and P. Deguire, Approachability and fixed points for nonconvex set-valued maps, J. Math. Anal. Appl. 170 (1992), no. 2, 477–500. 10.1016/0022-247X(92)90032-9Suche in Google Scholar

[6] T.-H. Chang, Y.-Y. Huang and J.-C. Jeng, Fixed-point theorems for multifunctions in S-KKM class, Nonlinear Anal. 44 (2001), no. 8, 1007–1017. 10.1016/S0362-546X(99)00318-1Suche in Google Scholar

[7] T.-H. Chang and C.-L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203 (1996), no. 1, 224–235. 10.1006/jmaa.1996.0376Suche in Google Scholar

[8] X. P. Ding, W. K. Kim and K.-K. Tan, A selection theorem and its applications, Bull. Aust. Math. Soc. 46 (1992), no. 2, 205–212. 10.1017/S0004972700011849Suche in Google Scholar

[9] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Math. Appl. 495, Kluwer Academic, Dordrecht, 1991. Suche in Google Scholar

[10] A. Granas and J. Dugundji, Fixed Point Theory, Springer Monogr. Math., Springer, New York, 2003. 10.1007/978-0-387-21593-8Suche in Google Scholar

[11] W. He and N. C. Yannelis, Equilibria with discontinuous preferences: New fixed point theorems, J. Math. Anal. Appl. 450 (2017), no. 2, 1421–1433. 10.1016/j.jmaa.2017.01.089Suche in Google Scholar

[12] M. A. Khan, R. P. McLean and M. Uyanik, On equilibria in constrained generalized games with the weak continuous inclusion property, J. Math. Anal. Appl. 537 (2024), no. 1, Article ID 128258. 10.1016/j.jmaa.2024.128258Suche in Google Scholar

[13] L.-J. Lin, S. Park and Z.-T. Yu, Remarks on fixed points, maximal elements, and equilibria of generalized games, J. Math. Anal. Appl. 233 (1999), no. 2, 581–596. 10.1006/jmaa.1999.6311Suche in Google Scholar

[14] E. Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361–382. 10.2307/1969615Suche in Google Scholar

[15] D. O’Regan, Coincidences for multivalued maps and minimax inequalities, Commun. Appl. Anal. 3 (1999), no. 4, 471–481. Suche in Google Scholar

[16] D. O’Regan, Fixed point theory on extension-type spaces and essential maps on topological spaces, Fixed Point Theory Appl. 2024 (2004), no. 1, 13–20. 10.1155/S1687182004311046Suche in Google Scholar

[17] D. O’Regan, Wu maps and collectively coincidence theory, Acta Math. Hungar. 175 (2025), no. 2, 472–485. 10.1007/s10474-025-01530-6Suche in Google Scholar

[18] D. O’Regan, KKM type maps and collectively coincidence theory, submitted. Suche in Google Scholar

[19] X. Wu, A new fixed point theorem and its applications, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1779–1783. 10.1090/S0002-9939-97-03903-8Suche in Google Scholar

Received: 2025-03-03
Revised: 2025-06-23
Accepted: 2025-06-23
Published Online: 2025-06-28
Published in Print: 2025-08-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/anly-2025-0018/html?lang=de
Button zum nach oben scrollen