Abstract
In this paper, we propose a novel concept of modified intuitionistic fuzzy double controlled metric spaces. Unlike traditional intuitionistic fuzzy bb-metric spaces, this framework integrates two non-comparable functions within the triangle inequality. To demonstrate the relevance and applicability of our results, we include illustrative examples and practical applications.
References
[1] C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 29 (2006), no. 5, 1073–1078. 10.1016/j.chaos.2005.08.066Suche in Google Scholar
[2] E. Ameer, H. Aydi and M. Arshad, On fuzzy fixed points and an application to ordinary fuzzy differential equations, J. Funct. Spaces 2020 (2020), Article ID 8835751. 10.1155/2020/8835751Suche in Google Scholar
[3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87–96. 10.1016/S0165-0114(86)80034-3Suche in Google Scholar
[4] I. Beg, V. Gupta and A. Kanwar, Fixed point on intuitionistic fuzzy metric spaces using E. A. property, J. Nonlinear Funct. Anal. 2015 (2015), Paper No. 20. Suche in Google Scholar
[5] M. Farheen, K. Ahmed, K. Javed, V. Parvaneh, F. Ud Din and U. Ishtiaq, Intuitionistic fuzzy double controlled metric spaces and related results, Secur. Commun. Netw. 2022 (2022), 10.1155/2022/6254055. 10.1155/2022/6254055Suche in Google Scholar
[6] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst. 64 (1994), 395–399. 10.1016/0165-0114(94)90162-7Suche in Google Scholar
[7] V. Gupta and A. Gondhi, Fixed points of weakly compatible maps on modified intuitionistic fuzzy soft metric spaces, Int. J. Syst. Assur. Eng. Manag. 13 (2022), no. 3, 1232–1238. 10.1007/s13198-021-01423-1Suche in Google Scholar
[8] V. Gupta, A. Gondhi and R. Shukla, Fixed point results in modified intuitionistic fuzzy soft metric spaces with application, Mathematics 12 (2024), no. 8, Article ID 1154. 10.3390/math12081154Suche in Google Scholar
[9] V. Gupta and A. Kanwar, Some new fixed point results on intuitionistic fuzzy metric spaces, Cogent Math. 3 (2016), Article ID 1142839. 10.1080/23311835.2016.1142839Suche in Google Scholar
[10]
V. Gupta and A. Kanwar,
Unified fixed point theorems on
[11] V. Gupta, R. K. Saini and A. Kanwar, Some common coupled fixed point results on modified intuitionistic fuzzy metric spaces, Proc. Comput. Sci. 79 (2016), 32–40. 10.1016/j.procs.2016.03.006Suche in Google Scholar
[12] V. Gupta, R. K. Saini and A. Kanwar, Some coupled fixed point results on modified intuitionistic fuzzy metric spaces and application to integral type contraction, Iran. J. Fuzzy Syst. 14 (2017), no. 5, 123–137. Suche in Google Scholar
[13] U. Ishtiaq, K. Javed, F. Uddin, M. D. L. Sen, K. Ahmed and M. U. Ali, Fixed point results in orthogonal neutrosophic metric spaces, Complexity 2021 (2021), 10.1155/2021/2809657. 10.1155/2021/2809657Suche in Google Scholar
[14] K. Javed, H. Aydi, F. Uddin and M. Arshad, On orthogonal partial b-metric spaces with an application, J. Math. 2021 (2021), Article ID 6692063. Suche in Google Scholar
[15] K. Javed, F. Uddin, H. Aydi, M. Arshad, U. Ishtiaq and H. Alsamir, On fuzzy b-metric-like spaces, J. Funct. Spaces 2021 (2021), Article ID 6615976. 10.1155/2021/6615976Suche in Google Scholar
[16] K. Javed, F. Uddin, H. Aydi, A. Mukheimer and M. Arshad, Ordered-theoretic fixed point results in fuzzy b-metric spaces with an application, J. Math. 2021 (2021), Article ID 6663707. 10.1155/2021/6663707Suche in Google Scholar
[17] N. Konwar, Extension of fixed point results in intuitionistic fuzzy b metric space, J. Intell. Fuzzy Syst. 39 (2020), no. 5, 7831–7841. 10.3233/JIFS-201233Suche in Google Scholar
[18] I. Kramosil and J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika (Prague) 11 (1975), no. 5, 336–344. Suche in Google Scholar
[19] N. Mlaiki, H. Aydi, N. Souayah and T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics 6 (2018), no. 10, Paper No. 194. 10.3390/math6100194Suche in Google Scholar
[20] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), no. 5, 1039–1046. 10.1016/j.chaos.2004.02.051Suche in Google Scholar
[21] R. Saadati, S. Sedghi and N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos Solitons Fractals 38 (2008), no. 1, 36–47. 10.1016/j.chaos.2006.11.008Suche in Google Scholar
[22] R. K. Saini, V. Gupta, A. Kanwar and J. Jindal, Biased maps in modified intuitionistic fuzzy metric space and common fixed point results, Adv. Intell. Syst. Comput. 1053 (2020), 591–597. 10.1007/978-981-15-0751-9_55Suche in Google Scholar
[23] N. Saleem, H. Isik, S. Furqan and C. Park, Fuzzy double controlled metric spaces, J. Intell. Fuzzy Syst. 40 (2021), no. 5, 9977–9985. 10.3233/JIFS-202594Suche in Google Scholar
[24] N. Saleem, K. Javed, F. Uddin, U. Ishtiaq, K. Ahmed, T. Abdeljawad and M. A. Alqudah, Unique solution of integral equations via intuitionistic extended fuzzy b-metric-like spaces, CMES-Comput. Model. Eng. Sci. 135 (2022), no. 1, 109–131. 10.32604/cmes.2022.021031Suche in Google Scholar
[25] M. S. Sezen, Controlled fuzzy metric spaces and some related fixed point results, Numer. Methods Partial Differential Equations 37 (2021), no. 1, 583–593. 10.1002/num.22541Suche in Google Scholar
[26] W. Shatanawi, V. Gupta and A. Kanwar, New results on modified intuitionistic generalized fuzzy metric spaces by employing E. A property and common E. A property for coupled maps, J. Intell. Fuzzy Syst. 38 (2020), no. 3, 3003–3010. 10.3233/JIFS-190541Suche in Google Scholar
[27] W. Sintunavarat and P. Kumam, Fixed point theorems for a generalized intuitionistic fuzzy contraction in intuitionistic fuzzy metric spaces, Thai J. Math. 10 (2012), no. 1, 123–135. 10.1186/1687-1812-2012-128Suche in Google Scholar
[28] F. Uddin, U. Ishtiaq, K. Javed, S. S. Aiadi, M. Arshad, N. Souayah and N. Mlaiki, A new extension to the intuitionistic fuzzy metric-like spaces, Symmetry 14 (2022), no. 7, Paper No. 1400. 10.3390/sym14071400Suche in Google Scholar
[29] F. Uddin, K. Javed, H. Aydi, U. Ishtiaq and M. Arshad, Control fuzzy metric spaces via orthogonality with an application, J. Math. 2021 (2021), Article ID 5551833. 10.1155/2021/5551833Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston