Startseite A novel Beta matrix function via Wiman matrix function and their applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A novel Beta matrix function via Wiman matrix function and their applications

  • Nabiullah Khan EMAIL logo und Saddam Husain ORCID logo
Veröffentlicht/Copyright: 3. Mai 2023
Analysis
Aus der Zeitschrift Analysis Band 43 Heft 4

Abstract

Many authors defined and extended the beta function in various forms because the beta function has wide uses in different fields of science and applied science. In this article, we define a new more generalized form of the extended beta matrix function via the Wiman matrix function and describe their significant properties and special cases. Furthermore, we define an extension of the Gauss hypergeometric and confluent hypergeometric matrix functions by adopting a novel type of beta matrix function. We also derive their Laplace transform, derivative formula and transformation formulae.

References

[1] M. Abdalla and A. Bakhet, Extension of Beta matrix function, Asian J. Math. Comput. Res. 9 (2016), 253–264. Suche in Google Scholar

[2] M. Abdalla and A. Bakhet, Extended Gauss hypergeometric matrix functions, Iran. J. Sci. Technol. Trans. A Sci. 42 (2018), no. 3, 1465–1470. 10.1007/s40995-017-0183-3Suche in Google Scholar

[3] B. Çekim, Generalized Euler’s beta matrix and related functions, AIP Conf. Proc. 1558 (2013), 1132–1135. 10.1063/1.4825707Suche in Google Scholar

[4] M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19–32. 10.1016/S0377-0427(96)00102-1Suche in Google Scholar

[5] M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2004), no. 2, 589–602. 10.1016/j.amc.2003.09.017Suche in Google Scholar

[6] J. Choi, A. K. Rathie and R. K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J. 36 (2014), no. 2, 357–385. 10.5831/HMJ.2014.36.2.357Suche in Google Scholar

[7] L. Debnath and D. Bhatta, Integral Transforms and Their Applications, Chapman & Hall/CRC, Boca Raton, 2016. 10.1201/9781420010916Suche in Google Scholar

[8] N. Dunford and J. Schwartz, Linear Operators. Part 1, Interscience, New York, 1963. Suche in Google Scholar

[9] G. B. Folland, Fourier Analysis and its Applications, American Mathematical Society, Providence, 2009. Suche in Google Scholar

[10] R. Garrappa and M. Popolizio, Computing the matrix Mittag-Leffler function with applications to fractional calculus, J. Sci. Comput. 77 (2018), no. 1, 129–153. 10.1007/s10915-018-0699-5Suche in Google Scholar

[11] R. Goyal, P. Agarwal, G. I. Oros and S. Jain, Extended beta and gamma matrix functions via 2-parameter Mittag-Leffler matrix function, Mathematics 10 (2022), no. 6, Paper No. 892. 10.3390/math10060892Suche in Google Scholar

[12] S. Jain, R. Goyal, G. I. Oros, P. Agarwal and S. Momani, A study of generalized hypergeometric matrix functions via two-parameter Mittag-Leffler matrix function, Open Phys. 20 (2022), 730–739. 10.1515/phys-2022-0068Suche in Google Scholar

[13] L. Jódar and J. C. Cortés, On the hypergeometric matrix function, J. Comput. Appl. Math. 99 (1998), no. 1–2, 205–217. 10.1016/S0377-0427(98)00158-7Suche in Google Scholar

[14] L. Jódar and J. C. Cortés, Some properties of gamma and beta matrix functions, Appl. Math. Lett. 11 (1998), no. 1, 89–93. 10.1016/S0893-9659(97)00139-0Suche in Google Scholar

[15] N. U. Khan and S. Husain, A note on extended beta function inolving generalized Mittag-Leffler function and its applications, TWMS J. Appl. Eng. Math. 12 (2022), 71–81. Suche in Google Scholar

[16] A. Verma, S. Bajpai and K. S. Yadav, Some results of new extended beta, hypergeometric, Appell and Lauricella matrix functions, Res. Math. 9 (2022), no. 1, Paper No. 2151555. 10.1080/27684830.2022.2151555Suche in Google Scholar

Received: 2022-08-24
Revised: 2023-03-08
Accepted: 2023-03-13
Published Online: 2023-05-03
Published in Print: 2023-11-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/anly-2022-1098/html?lang=de
Button zum nach oben scrollen