Startseite Existence of anti-periodic solutions for Ψ-Caputo-type fractional p-Laplacian problems via Leray--Schauder degree theory
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence of anti-periodic solutions for Ψ-Caputo-type fractional p-Laplacian problems via Leray--Schauder degree theory

  • Ali El Mfadel EMAIL logo , Said Melliani und M’hamed Elomari
Veröffentlicht/Copyright: 31. März 2023
Analysis
Aus der Zeitschrift Analysis Band 43 Heft 3

Abstract

The main crux of this work is to study the existence of solutions for a certain type of nonlinear Ψ-Caputo fractional differential equations with anti-periodic boundary conditions and p-Laplacian operator. The proofs are based on the Leray–Schauder degree theory and some basic concepts of Ψ-Caputo fractional calculus. As an application, our theoretical result has been illustrated by providing a suitable example.

MSC 2020: 34A08; 26A33; 34K37

Acknowledgements

The authors are thankful to the referee for her/his valuable suggestions towards the improvement of the paper.

References

[1] R. Agarwal, S. Hristova and D. O’Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal. 19 (2016), no. 2, 290–318. 10.1515/fca-2016-0017Suche in Google Scholar

[2] R. P. Agarwal, S. K. Ntouyas, B. Ahmad and A. K. Alzahrani, Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments, Adv. Difference Equ. 2016 (2016), Paper No. 92. 10.1186/s13662-016-0810-xSuche in Google Scholar

[3] R. P. Agarwal, D. O’Regan and N. S. Papageorgiou, On the existence of two nontrivial solutions of periodic problems with operators of p-Laplacian type, Differ. Equ. 34 (2007), no. 2, 157–163. 10.1134/S0012266107020036Suche in Google Scholar

[4] R. P. Agarwal, Y. Zhou, J. Wang and X. Luo, Fractional functional differential equations with causal operators in Banach spaces, Math. Comput. Modelling 54 (2011), no. 5–6, 1440–1452. 10.1016/j.mcm.2011.04.016Suche in Google Scholar

[5] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 460–481. 10.1016/j.cnsns.2016.09.006Suche in Google Scholar

[6] R. Almeida, A. B. Malinowska and M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci. 41 (2018), no. 1, 336–352. 10.1002/mma.4617Suche in Google Scholar

[7] M. Altman, A fixed point theorem in Hilbert space, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 19–22. Suche in Google Scholar

[8] D. Baleanu, H. Jafari, H. Khan and S. J. Johnston, Results for mild solution of fractional coupled hybrid boundary value problems, Open Math. 13 (2015), no. 1, 601–608. 10.1515/math-2015-0055Suche in Google Scholar

[9] D. Baleanu, H. Khan, H. Jafari, R. A. Khan and M. Alipour, On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions, Adv. Difference Equ. 2015 (2015), 1–14. 10.1186/s13662-015-0651-zSuche in Google Scholar

[10] A. Belarbi, M. Benchohra and A. Ouahab, Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces, Appl. Anal. 85 (2006), no. 12, 1459–1470. 10.1080/00036810601066350Suche in Google Scholar

[11] W. Benhamida, J. R. Graef and S. Hamani, Boundary value problems for fractional differential equations with integral and anti-periodic conditions in a Banach space, Prog. Frac. Differ. Appl. 4 (2018), no. 2, 1–7. 10.18576/pfda/040201Suche in Google Scholar

[12] A. Boutiara, K. Guerbati and M. Benbachir, Caputo–Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Math. 5 (2020), no. 1, 259–272. Suche in Google Scholar

[13] M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Int. J. Geographical Inform. Sci. 13 (1967), no. 5, 529–539. 10.1111/j.1365-246X.1967.tb02303.xSuche in Google Scholar

[14] G. Chai, Positive solutions for boundary value problem of fractional differential equation with p-Laplacian operator, Bound. Value Probl. 2012 (2012), 1–20. 10.1186/1687-2770-2012-18Suche in Google Scholar

[15] X. Chang and Y. Qiao, Existence of periodic solutions for a class of p-Laplacian equations, Bound. Value Probl. 2013 (2013), 1–11. 10.1186/1687-2770-2013-96Suche in Google Scholar

[16] T. Chen and W. Liu, An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator, Appl. Math. Lett. 25 (2012), no. 11, 1671–1675. 10.1016/j.aml.2012.01.035Suche in Google Scholar

[17] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Math. 2004, Springer, Berlin, 2010. 10.1007/978-3-642-14574-2Suche in Google Scholar

[18] A. El Mfadel, F. E. Bourhim and M. Elomari, Existence of mild solutions for semilinear ψ-Caputo-type fractional evolution equations with nonlocal conditions in Banach spaces, Results Nonlinear Anal. 5 (2022), no. 4, 459–472. 10.53006/rna.1121916Suche in Google Scholar

[19] A. El Mfadel, S. Melliani and M. Elomari, A note on the stability analysis of fuzzy nonlinear fractional differential equations involving the Caputo fractional derivative, Int. J. Math. Math. Sci. 2021 (2021), Article ID 7488524. 10.1155/2021/7488524Suche in Google Scholar

[20] A. El Mfadel, S. Melliani and M. Elomari, Notes on local and nonlocal intuitionistic fuzzy fractional boundary value problems with Caputo fractional derivatives, J. Math. 2021 (2021), Article ID 4322841. 10.1155/2021/4322841Suche in Google Scholar

[21] A. El Mfadel, S. Melliani and M. Elomari, On the existence and uniqueness results for fuzzy linear and semilinear fractional evolution equations involving Caputo fractional derivative, J. Funct. Spaces 2021 (2021), Article ID 4099173. 10.1155/2021/4099173Suche in Google Scholar

[22] A. El Mfadel, S. Melliani and M. Elomari, Existence and uniqueness results for ψ-Caputo fractional boundary value problems involving the p-Laplacian operator, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 84 (2022), no. 1, 37–46. Suche in Google Scholar

[23] A. El Mfadel, S. Melliani and M. Elomari, Existence of solutions for nonlinear ψ-Caputo-type fractional hybrid differential equations with periodic boundary conditions, Asia Pac. J. Math. 7 (2022), 171–186. Suche in Google Scholar

[24] A. El Mfadel, S. Melliani and M. Elomari, Existence results for nonlocal Cauchy problem of nonlinear ψ-Caputo type fractional differential equations via topological degree methods, Adv. Theory Nonlinear Anal. Appl. 6 (2022), no. 2, 270–279. 10.31197/atnaa.1059793Suche in Google Scholar

[25] A. El Mfadel, S. Melliani and M. Elomari, New existence results for nonlinear functional hybrid differential equations involving the ψ-Caputo fractional derivative, Results Nonlinear Anal. 5 (2022), 78–86. 10.53006/rna.1020895Suche in Google Scholar

[26] J. W. Green and F. A. Valentine, On the Arzelà–Ascoli theorem, Math. Mag. 34 (1960/61), 199–202. 10.1080/0025570X.1961.11975217Suche in Google Scholar

[27] T. L. Guo and W. Jiang, Impulsive fractional functional differential equations, Comput. Math. Appl. 64 (2012), no. 10, 3414–3424. 10.1016/j.camwa.2011.12.054Suche in Google Scholar

[28] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, 2000. 10.1142/3779Suche in Google Scholar

[29] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006. Suche in Google Scholar

[30] L. S. Leibenson, Turbulent movement of gas in a porous medium, Izv. Akad. Nauk SSSR 9 (1945), 3–6. Suche in Google Scholar

[31] S. Liang and S. Shi, Existence of multiple positive solutions for m-point fractional boundary value problems with p-Laplacian operator on infinite interval, J. Appl. Math. Comput. 38 (2012), no. 1–2, 687–707. 10.1007/s12190-011-0505-0Suche in Google Scholar

[32] Y. Luchko and J. J. Trujillo, Caputo-type modification of the Erdélyi–Kober fractional derivative, Fract. Calc. Appl. Anal. 10 (2007), no. 3, 249–267. Suche in Google Scholar

[33] F. Mainardi, Fractals and Fractional Calculus Continuum Mechanics, Springer, Vienna, 1997. 10.1007/978-3-7091-2664-6_7Suche in Google Scholar

[34] I. Podlubny, Fractional Differential Equations, Math. Sci. Eng. 198, Academic Press, San Diego, 1999. Suche in Google Scholar

[35] J. Wang, H. Xiang and Z. Liu, Existence of concave positive solutions for boundary value problem of nonlinear fractional differential equation with p-Laplacian operator, Int. J. Math. Math. Sci. 2010 (2010), Article ID 495138. 10.1155/2010/495138Suche in Google Scholar

[36] S. Zhang, Existence of solution for a boundary value problem of fractional order, Acta Math. Sci. Ser. B (Engl. Ed.) 26 (2006), no. 2, 220–228. 10.1016/S0252-9602(06)60044-1Suche in Google Scholar

[37] J. Zhao, P. Wang and W. Ge, Existence and nonexistence of positive solutions for a class of third order BVP with integral boundary conditions in Banach spaces, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 1, 402–413. 10.1016/j.cnsns.2009.10.011Suche in Google Scholar

[38] W. Zhong and W. Lin, Nonlocal and multiple-point boundary value problem for fractional differential equations, Comput. Math. Appl. 59 (2010), no. 3, 1345–1351. 10.1016/j.camwa.2009.06.032Suche in Google Scholar

[39] Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal. Real World Appl. 11 (2010), no. 5, 4465–4475. 10.1016/j.nonrwa.2010.05.029Suche in Google Scholar

Received: 2022-07-18
Revised: 2022-10-26
Accepted: 2023-02-28
Published Online: 2023-03-31
Published in Print: 2023-08-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/anly-2022-1089/html
Button zum nach oben scrollen