Abstract
This paper studies the behavior of the lower and upper multifractal
Hewitt–Stromberg functions under slices onto
Acknowledgements
The author is greatly indebted to Professor Jinjun Li for useful discussions while writing this manuscript and for pointing out that the upper (fractal/multifractal) Hewitt–Stromberg function may not be a metric outer measure. Also, the author would like to thank Professor Lars Olsen for the counterexample.
References
[1] N. Attia and B. Selmi, Regularities of multifractal Hewitt–Stromberg measures, Commun. Korean Math. Soc. 34 (2019), no. 1, 213–230. Suche in Google Scholar
[2] N. Attia and B. Selmi, A multifractal formalism for Hewitt–Stromberg measures, J. Geom. Anal. 31 (2021), no. 1, 825–862. 10.1007/s12220-019-00302-3Suche in Google Scholar
[3] N. Attia and B. Selmi, On the mutual singularity of Hewitt–Stromberg measures, Anal. Math. 47 (2021), no. 2, 273–283. 10.1007/s10476-021-0079-5Suche in Google Scholar
[4] J. Barral and I. Bhouri, Multifractal analysis for projections of Gibbs and related measures, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 673–701. 10.1017/S0143385710000143Suche in Google Scholar
[5] I. Bhouri, On the projections of generalized upper Lq-spectrum, Chaos, Solitons and Fractals 42 (2009), no. 3, 1451–1462. 10.1016/j.chaos.2009.03.056Suche in Google Scholar
[6] Z. Douzi and B. Selmi, On the mutual singularity of Hewitt–Stromberg measures for which the multifractal functions do not necessarily coincide, Ric. Mat. (2021), 10.1007/s11587-021-00572-6. 10.1007/s11587-021-00572-6Suche in Google Scholar
[7] G. A. Edgar, Integral, Probability, and Fractal Measures, Springer, New York, 1998. 10.1007/978-1-4757-2958-0Suche in Google Scholar
[8] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 1990. 10.2307/2532125Suche in Google Scholar
[9] K. J. Falconer, Sets with large intersection properties, J. Lond. Math. Soc. (2) 49 (1994), no. 2, 267–280. 10.1112/jlms/49.2.267Suche in Google Scholar
[10] K. J. Falconer, M. Järvenpää and P. Mattila, Examples illustrating the instability of packing dimensions of sections, Real Anal. Exchange 25 (1999/2000), no. 2, 629–640. 10.2307/44154018Suche in Google Scholar
[11] K. J. Falconer and P. Mattila, The packing dimension of projections and sections of measures, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 4, 695–713. 10.1017/S0305004100074533Suche in Google Scholar
[12] K. J. Falconer and T. C. O’Neil, Convolutions and the geometry of multifractal measures, Math. Nachr. 204 (1999), 61–82. 10.1002/mana.19992040105Suche in Google Scholar
[13] H. Haase, A contribution to measure and dimension of metric spaces, Math. Nachr. 124 (1985), 45–55. 10.1002/mana.19851240104Suche in Google Scholar
[14] H. Haase, Open-invariant measures and the covering number of sets, Math. Nachr. 134 (1987), 295–307. 10.1002/mana.19871340121Suche in Google Scholar
[15] E. Hewitt and K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Springer, New York, 1965. 10.1007/978-3-642-88044-5Suche in Google Scholar
[16] E. Järvenpää and M. Järvenpää, Linear mappings and generalized upper spectrum for dimensions, Nonlinearity 45 (1998), 55–77. 10.1088/0951-7715/12/3/003Suche in Google Scholar
[17] E. Järvenpää, M. Järvenpää and M. Llorente, Local dimensions of sliced measures and stability of packing dimensions of sections of sets, Adv. Math. 183 (2004), no. 1, 127–154. 10.1016/S0001-8708(03)00084-7Suche in Google Scholar
[18] M. Järvenpää and P. Mattila, Hausdorff and packing dimensions and sections of measures, Mathematika 45 (1998), no. 1, 55–77. 10.1112/S0025579300014042Suche in Google Scholar
[19] S. Jurina, N. MacGregor, A. Mitchell, L. Olsen and A. Stylianou, On the Hausdorff and packing measures of typical compact metric spaces, Aequationes Math. 92 (2018), no. 4, 709–735. 10.1007/s00010-018-0548-5Suche in Google Scholar
[20] B. Lammering, Slices of multifractal measures and applications to rainfall distributions, Fractals 8 (2000), no. 4, 337–348. 10.1142/S0218348X00000391Suche in Google Scholar
[21]
J. Li,
Large equivalence of
[22] A. Manning and K. Simon, Dimension of slices through the Sierpinski carpet, Trans. Amer. Math. Soc. 365 (2013), no. 1, 213–250. 10.1090/S0002-9947-2012-05586-3Suche in Google Scholar
[23] J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. Lond. Math. Soc. (3) 4 (1954), 257–302. 10.1112/plms/s3-4.1.257Suche in Google Scholar
[24] P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 227–244. 10.5186/aasfm.1975.0110Suche in Google Scholar
[25] P. Mattila, Integral geometric properties of capacities, Trans. Amer. Math. Soc. 266 (1981), no. 2, 539–554. 10.1090/S0002-9947-1981-0617550-8Suche in Google Scholar
[26] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Stud. Adv. Math. 44, Cambridge University, Cambridge, 1995. 10.1017/CBO9780511623813Suche in Google Scholar
[27] L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), no. 1, 82–196. 10.1006/aima.1995.1066Suche in Google Scholar
[28] L. Olsen, Multifractal dimensions of product measures, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 4, 709–734. 10.1017/S0305004100001675Suche in Google Scholar
[29] L. Olsen, Geometric constructions in multifractal geometry, Period. Math. Hungar. 37 (1998), 81–99. 10.1023/A:1004730520036Suche in Google Scholar
[30] L. Olsen, Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures, Math. Scand. 86 (2000), no. 1, 109–129. 10.7146/math.scand.a-14284Suche in Google Scholar
[31] L. Olsen, Multifractal geometry, Fractal Geometry and Stochastics. II, Progr. Probab. 46, Birkhäuser, Basel (2000), 3–37. 10.1007/978-3-0348-8380-1_1Suche in Google Scholar
[32] L. Olsen, On average Hewitt–Stromberg measures of typical compact metric spaces, Math. Z. 293 (2019), no. 3–4, 1201–1225. 10.1007/s00209-019-02239-3Suche in Google Scholar
[33] T. C. O’Neil, The multifractal spectra of projected measures in Euclidean spaces, Chaos Solitons Fractals 11 (2000), 901–921. 10.1016/S0960-0779(98)00256-2Suche in Google Scholar
[34] T. Orponen, On the packing measure of slices of self-similar sets, J. Fractal Geom. 2 (2015), no. 4, 389–401. 10.4171/JFG/26Suche in Google Scholar
[35] Y. B. Pesin, Dimension Theory in Dynamical Systems. Contemporary Views and Applications, Chicago Lect. in Math., University of Chicago, Chicago, 1997. 10.7208/chicago/9780226662237.001.0001Suche in Google Scholar
[36] A. Rapaport, On the Hausdorff and packing measures of slices of dynamically defined sets, J. Fractal Geom. 3 (2016), no. 1, 33–74. 10.4171/JFG/29Suche in Google Scholar
[37] T. Ripatti, Local dimensions of intersection measures: similarities, linear maps and continuously differentiable functions, Ann. Acad. Sci. Fenn. Math. Diss. (2010), no. 156, 1–52. 10.5186/aasfmd.2010.156Suche in Google Scholar
[38] B. Selmi, On the projections of the multifractal Hewitt–Stromberg dimension functions, preprint (2019), https://arxiv.org/abs/1911.09643. Suche in Google Scholar
[39] B. Selmi, A note on the multifractal Hewitt–Stromberg measures in a probability space, Korean J. Math. 28 (2020), no. 2, 323–341. Suche in Google Scholar
[40]
B. Selmi,
On the projections of the multifractal packing dimension for
[41] B. Selmi, Multifractal geometry of slices of measures, Z. Anal. Anwend. 40 (2021), no. 2, 237–253. 10.4171/ZAA/1682Suche in Google Scholar
[42] B. Selmi, A review on multifractal analysis of Hewitt–Stromberg measures, J. Geom. Anal., to appear. 10.1007/s12220-021-00753-7Suche in Google Scholar
[43]
B. Selmi and N. Y. Svetova,
On the projections of mutual
[44] B. Selmi and N. Y. Svetova, Projections and slices of measures, Commun. Korean Math. Soc. 36 (2021), no. 2, 327–342. Suche in Google Scholar
[45] Z. Wen, W. Wu and L. Xi, Dimension of slices through a self-similar set with initial cubic pattern, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 2, 473–487. 10.5186/aasfm.2013.3836Suche in Google Scholar
[46] Z.-Y. Wen and L.-F. Xi, On the dimensions of sections for the graph-directed sets, Ann. Acad. Sci. Fenn. Math. 35 (2010), no. 2, 515–535. 10.5186/aasfm.2010.3532Suche in Google Scholar
[47] W. Wu and L. Xi, Dimensions of slices through a class of generalized Sierpinski sponges, J. Math. Anal. Appl. 399 (2013), no. 2, 514–523. 10.1016/j.jmaa.2012.10.041Suche in Google Scholar
[48] L. Xi, W. Wu and Y. Xiong, Dimension of slices through fractals with initial cubic pattern, Chin. Ann. Math. Ser. B 38 (2017), no. 5, 1145–1178. 10.1007/s11401-017-1029-1Suche in Google Scholar
[49] O. Zindulka, Packing measures and dimensions on Cartesian products, Publ. Mat. 57 (2013), no. 2, 393–420. 10.5565/PUBLMAT_57213_06Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Regularity criteria for 3D Navier–Stokes equations in terms of a mid frequency part of velocity in B˙-1 ∞,∞
- Some further studies on strong ℐλ-statistical convergence in probabilistic metric spaces
- Slices of Hewitt–Stromberg measures and co-dimensions formula
- Gradient estimates for Monge–Ampère type equations on compact almost Hermitian manifolds with boundary
- Certain results on trans-paraSasakian 3-manifolds
Artikel in diesem Heft
- Frontmatter
- Regularity criteria for 3D Navier–Stokes equations in terms of a mid frequency part of velocity in B˙-1 ∞,∞
- Some further studies on strong ℐλ-statistical convergence in probabilistic metric spaces
- Slices of Hewitt–Stromberg measures and co-dimensions formula
- Gradient estimates for Monge–Ampère type equations on compact almost Hermitian manifolds with boundary
- Certain results on trans-paraSasakian 3-manifolds