Home Prescribed mean curvature equation on torus
Article Open Access

Prescribed mean curvature equation on torus

  • Yuki Tsukamoto EMAIL logo
Published/Copyright: April 19, 2021

Abstract

Prescribed mean curvature problems on the torus have been considered in one dimension. In this paper, we prove the existence of a graph on the n-dimensional torus 𝕋n, the mean curvature vector of which equals the normal component of a given vector field satisfying suitable conditions for a Sobolev norm, the integrated value, and monotonicity.

MSC 2010: 35J93

1 Introduction

In this paper, we consider the following prescribed mean curvature problem on the torus 𝕋n:=ℝn/β„€n:

(1.1)-div⁑(βˆ‡β‘u1+|βˆ‡β‘u|2)=ν⁒(βˆ‡β‘u)β‹…g⁒(x,u⁒(x)) on ⁒𝕋n,

where Ξ½ is the unit normal vector of u, that is,

ν⁒(z)=11+|z|2⁒(-z,1).

The vector field g⁒(x,xn+1):𝕋n×ℝ→ℝn+1 is given, and we seek a solution u satisfying (1.1). The left-hand side of (1.1) represents the mean curvature of the graph of u, and the right-hand side is the normal component of the vector field g on the graph.

In the case of Dirichlet conditions of a bounded domain Ξ©βŠ‚β„n, prescribed mean curvature problems have been studied by numerous researchers. Bergner [3] solved the Dirichlet problem in the case where the right-hand side of (1.1) is H=H⁒(x,u,ν⁒(βˆ‡β‘u)) under the assumptions of boundedness (|H|<∞), monotonicity (βˆ‚n+1⁑Hβ‰₯0), and convexity of Ξ©. Under the same conditions for the function H, Marquardt [9] imposed a condition on βˆ‚β‘Ξ© depending on H that guarantees the existence of solutions even for a domain Ξ© that is not necessarily convex. In [13], we proved the existence of a solution only under the condition that the Sobolev norm of H is sufficiently small. In the case of a compact Riemannian manifold, Aubin [2] solved the linear elliptic problem -βˆ‚i⁑[ai⁒j⁒(x)β’βˆ‚j⁑u]=H⁒(x) if the integrated value of H is zero. The assumption of the integrated value plays an important role in the existence of solutions to elliptic equations on a compact Riemannian manifold. Denny [4] solved the quasilinear elliptic problem -div⁑(a⁒(u⁒(x))β’βˆ‡β‘u)=H⁒(x) on the torus 𝕋n with n=2,3. Prescribed mean curvature problems on the one-dimensional torus

(uβ€²1+(uβ€²)2)β€²=H⁒(x,u,uβ€²)

have been investigated for a wide variety of conditions H (we refer to, for example, [5, 7, 8, 10, 11, 14]).

As we noted in [13], the motivation for the present study comes from a singular perturbation problem, and we proved the following in [12]. Suppose a constant Ξ΅>0 and functions Ο•Ξ΅βˆˆW1,2 and gΡ∈W1,p, with p>n+12, satisfy

-Ρ⁒Δ⁒ϕΡ+W′⁒(ϕΡ)Ξ΅=Ξ΅β’βˆ‡β‘Ο•Ξ΅β‹…gΞ΅,
∫(Ρ⁒|βˆ‡β‘Ο•Ξ΅|22+W⁒(ϕΡ)Ξ΅)⁒𝑑x+βˆ₯gΞ΅βˆ₯W1,p⁒(Ξ©~)≀C,

where W is a double-well potential such as W⁒(Ο•)=(1-Ο•2)2. Then the interface {ϕΡ=0} converges locally in the Hausdorff distance to a surface having a mean curvature given by Ξ½β‹…g as Ξ΅β†’0. Here, Ξ½ is the unit normal vector of the surface, and g is the weak W1,p limit of gΞ΅. If the surface is represented locally as a graph of a function u on 𝕋n, we can observe that u satisfies (1.1). In this paper, we prove the existence of solutions to (1.1) assuming that the Sobolev norm of g is sufficiently small, gn+1 for the (n+1)-st component is monotonous, and the integrated value of gn+1 is zero. The following theorem is the main result.

Theorem 1.1.

Fix n+12<p<n+1 and q=n⁒pn+1-p. Then there exists a constant Ρ1=Ρ1⁒(n,p)>0 with the following property: If Ρ<Ρ1, and

g=(g1,…,gn,gn+1)=(gβ€²,gn+1)∈W1,p⁒(𝕋nΓ—(-1,1);ℝn+1)

satisfies the relations

(1.2)βˆ₯gβˆ₯W1,p⁒(𝕋nΓ—(-1,1))<Ξ΅23,
(1.3)βˆ‚n+1⁑gn+1⁒(x,xn+1)>Ξ΅+Ξ΅12⁒|βˆ‚n+1⁑g′⁒(x,xn+1)|,
(1.4)βˆ«π•‹ngn+1⁒(x,0)=0,

then there exists a function u∈W2,q⁒(Tn) such that

(1.5)-div⁑(βˆ‡β‘u1+|βˆ‡β‘u|2)=ν⁒(βˆ‡β‘u)β‹…g⁒(x,u⁒(x)) on ⁒𝕋n.

Moreover, the following inequality holds:

βˆ₯u-βˆ«π•‹nu⁒(y)⁒𝑑yβˆ₯W2,q⁒(𝕋n)≀Ρ12.

Assumptions (1.2) and (1.3) guarantee the existence and uniqueness of solutions to the linearized problem of (1.1) where a given function depends on βˆ‡β‘u. Equation (1.4) is necessary for the existence of solutions to elliptic equations on the torus. To the best of our knowledge, prescribed mean curvature problems on the torus in the general dimension have been insufficiently studied. However, we have proved the existence of the solution under natural assumptions.

The following is the method of proof. First, we find the conditions of H for the linearized problem of (1.1), i.e.

-div⁑(βˆ‡β‘u1+|βˆ‡β‘v|2)=H,

to have a unique solution. If we add a suitable constant term for any v, the function ν⁒(βˆ‡β‘v)β‹…g⁒(x,v⁒(x)) satisfies the conditions. By estimating the norm of this solution with g, the mapping T⁒(v)=u has a fixed point using a fixed-point theorem, and Theorem 1.1 follows.

2 Proof of Theorem 1.1

A theorem that holds in the Euclidean space also holds on a torus, as we consider a function on a torus to be a periodic function in the Euclidean space.

Let X⁒(𝕋n) be a function space on 𝕋n. We define a subspace Xave⁒(𝕋n)βŠ‚X⁒(𝕋n) as

Xave:={w∈X:βˆ«π•‹nw=0}.

Theorem 2.1.

Suppose v∈C1⁒(Tn) and H∈Lave2⁒(Tn). Then there exists a unique function u∈Wave1,2⁒(Tn) such that

βˆ«π•‹nβˆ‡β‘uβ‹…βˆ‡β‘Ο•1+|βˆ‡β‘v|2=βˆ«π•‹nH⁒ϕ

for all Ο•βˆˆW1,2⁒(Tn).

Proof.

We define a function B:Wave1,2⁒(𝕋n)Γ—Wave1,2⁒(𝕋n)→ℝ by

B⁒[w1,w2,v]:=βˆ«π•‹nβˆ‡β‘w1β‹…βˆ‡β‘w21+|βˆ‡β‘v|2.

By the HΓΆlder inequality, we obtain

|B⁒[w1,w2,v]|β‰€βˆ«π•‹n|βˆ‡β‘w1|⁒|βˆ‡β‘w2|
≀βˆ₯βˆ‡β‘w1βˆ₯L2⁒(𝕋n)⁒βˆ₯βˆ‡β‘w2βˆ₯L2⁒(𝕋n)
(2.1)≀βˆ₯w1βˆ₯W1,2⁒(𝕋n)⁒βˆ₯w2βˆ₯W1,2⁒(𝕋n).

Using the PoincarΓ© inequality, we have

|B⁒[w,w,v]|β‰₯11+βˆ₯vβˆ₯C1⁒(𝕋n)2⁒βˆ₯βˆ‡β‘wβˆ₯L2⁒(𝕋n)2
(2.2)β‰₯11+βˆ₯vβˆ₯C1⁒(𝕋n)2⁒βˆ₯βˆ‡β‘wβˆ₯W1,2⁒(𝕋n)2.

By (2.1), (2.2), and the Lax–Milgram theorem, for any H∈Lave2⁒(𝕋n), there exists a unique function

u∈Wave1,2⁒(𝕋n)

such that

(2.3)βˆ«π•‹nβˆ‡β‘uβ‹…βˆ‡β‘Οˆ1+|βˆ‡β‘v|2=βˆ«π•‹nH⁒ψ

for all ψ∈Wave1,2⁒(𝕋n). For any Ο•βˆˆW1,2⁒(𝕋n), we define cΟ•:=βˆ«π•‹nΟ• and Ο•~:=Ο•-cΟ•βˆˆWave1,2⁒(𝕋n). By (2.3) and H∈Lave2⁒(𝕋n), we obtain

βˆ«π•‹nβˆ‡β‘uβ‹…βˆ‡β‘Ο•1+|βˆ‡β‘v|2=βˆ«π•‹nβˆ‡β‘uβ‹…βˆ‡β‘Ο•~1+|βˆ‡β‘v|2=βˆ«π•‹nH⁒ϕ~=βˆ«π•‹nH⁒ϕ.

Thus, Theorem 2.1 follows. ∎

We define a mollifier as follows:

η⁒(x):={C⁒exp⁑(1|x|2-1)for ⁒|x|<1,0for ⁒|x|β‰₯1,

where the constant C>0 is selected such that βˆ«β„n+1Ξ·=1. We define

ηλ⁒(x):=1λn⁒η⁒(xλ).

For any f∈L2⁒(𝕋nΓ—(-1,1)) and xn+1∈(-1+Ξ»,1-Ξ»),

fλ⁒(x,xn+1):=βˆ«π•‹nΓ—(-1,1)ηλ⁒(x-y,xn+1-yn+1)⁒f⁒(y,yn+1)⁒𝑑y
=∫Bn+1⁒(0,Ξ»)ηλ⁒(y,yn+1)⁒f⁒(x-y,xn+1-yn+1)⁒𝑑y,

where Bn+1⁒(x,Ξ») is an open ball with center x and radius Ξ» in 𝕋n×ℝ. Moreover, for any

g∈W1,p⁒(𝕋nΓ—(-1,1);ℝn+1),

we define gΞ»:=(gΞ»1,…,gΞ»n,gΞ»n+1)=(gΞ»β€²,gΞ»n+1).

Lemma 2.2.

Fix Ξ²1>0 and 0<Ξ»<1. Suppose v∈C1⁒(Tn) satisfies βˆ₯vβˆ₯C1⁒(Tn)<Ξ²1, and

g∈W1,p⁒(𝕋nΓ—(-1,1);ℝn+1)

satisfies

βˆ‚n+1⁑gn+1⁒(x,xn+1)>Ξ²1⁒|βˆ‚n+1⁑g′⁒(x,xn+1)|.

For any positive constant c0>0, if v⁒(Tn)+c0βŠ‚(-1+Ξ»,1-Ξ»), then

βˆ«π•‹nν⁒(βˆ‡β‘v)β‹…gλ⁒(x,v)<βˆ«π•‹nν⁒(βˆ‡β‘v)β‹…gλ⁒(x,v+c0).

Proof.

From the assumptions, we compute

βˆ«π•‹nν⁒(βˆ‡β‘v)β‹…(gλ⁒(x,v+c0)-gλ⁒(x,v))
=βˆ«π•‹n11+|βˆ‡β‘v|2⁒∫vv+c0-βˆ‡β‘vβ‹…βˆ‚n+1⁑gλ′⁒(x,t)+βˆ‚n+1⁑gΞ»n+1⁒(x,t)⁒d⁒t
β‰₯βˆ«π•‹n11+|βˆ‡β‘v|2⁒∫vv+c0-Ξ²1⁒|βˆ‚n+1⁑gλ′⁒(x,t)|+βˆ‚n+1⁑gΞ»n+1⁒(x,t)⁒d⁒t
β‰₯βˆ«π•‹n11+|βˆ‡β‘v|2⁒∫vv+c0βˆ«π•‹nΓ—(-1,1)ηλ⁒(x-y,t-yn+1)⁒{-Ξ²1⁒|βˆ‚n+1⁑g′⁒(y,yn+1)|+βˆ‚n+1⁑gn+1⁒(y,yn+1)}⁒𝑑t
>0.

Lemma 2.2 follows. ∎

Lemma 2.3.

Suppose g∈W1,p(TnΓ—(-1,1) and v∈C1⁒(Tn) with βˆ₯vβˆ₯C1⁒(Tn)≀716. Let q=n⁒pn+1-p. Then there exists a constant c1=c1⁒(n,p)>0 such that, if Ξ»<18,

βˆ₯gλ⁒(β‹…,v⁒(β‹…))βˆ₯Lq⁒(𝕋n)≀c1⁒βˆ₯gβˆ₯W1,p⁒(𝕋nΓ—(-1,1)).

Proof.

By the same proof as in [13, Lemma 2.3], we obtain

(2.4)βˆ₯gλ⁒(β‹…,v⁒(β‹…))βˆ₯Lq⁒(𝕋n)≀c2⁒βˆ₯gΞ»βˆ₯W1,p⁒(𝕋nΓ—(-78,78)),

where c2=c2⁒(n,p)>0. Using the Hâlder inequality, we obtain

βˆ«π•‹nΓ—(-78,78)|gΞ»|p⁒𝑑xβ‰€βˆ«π•‹nΓ—(-78,78)(∫Bn+1⁒(x,Ξ»)Ξ·Ξ»1-1p+1p⁒(x-y,xn+1-yn+1)⁒|g⁒(y,yn+1)|⁒𝑑y)p⁒𝑑x
β‰€βˆ«π•‹nΓ—(-78,78)(∫Bn+1⁒(x,Ξ»)ηλ⁒(x-y,xn+1-yn+1)⁒|g⁒(y,yn+1)|p⁒𝑑y)⁒𝑑x
β‰€βˆ«π•‹nΓ—(-1,1)|g⁒(y,yn+1)|p⁒(∫Bn+1⁒(y,Ξ»)ηλ⁒(x-y,xn+1-yn+1)⁒𝑑x)⁒𝑑y
(2.5)=βˆ«π•‹nΓ—(-1,1)|g⁒(y,yn+1)|p⁒𝑑y.

We can show that

βˆ₯βˆ‡β‘gΞ»βˆ₯Lp⁒(𝕋nΓ—(-78,78))≀βˆ₯βˆ‡β‘gβˆ₯Lp⁒(𝕋nΓ—(-1,1))

in the exact same manner, and Lemma 2.3 follows by (2.4) and (2.5). ∎

Theorem 2.4.

Suppose v∈C1⁒(Tn) and

g∈W1,p⁒(𝕋nΓ—(-1,1);ℝn+1).

Then there exist constants Ξ΅2=Ξ΅2⁒(n,p)>0 such that, if Ξ»<18, Ξ΅<Ξ΅2, and βˆ₯vβˆ₯C1⁒(Tn)≀Ρ1/2, then g satisfies (1.2)–(1.4). Then there exist a unique function u∈Wave1,2⁒(Tn) and a unique constant -14<cv<14 such that

(2.6)βˆ«π•‹nβˆ‡β‘uβ‹…βˆ‡β‘Ο•1+|βˆ‡β‘v|2=βˆ«π•‹nν⁒(βˆ‡β‘v)β‹…gλ⁒(x,v+cv)⁒ϕ

for all Ο•βˆˆW1,2⁒(Tn).

Proof.

We define

F⁒(t):=βˆ«π•‹nν⁒(βˆ‡β‘v)β‹…gλ⁒(x,v+t).

The function F is continuous. Suppose that Ρ<1162. We will consider that the domain of F is [-14,14]. By the mean value theorem, there exists a constant c3=c3⁒(n,p)>0 such that

F⁒(14)=βˆ«π•‹n(ν⁒(βˆ‡β‘v)-ν⁒(0)+ν⁒(0))β‹…gλ⁒(x,v+14)
(2.7)β‰₯-c3⁒βˆ₯vβˆ₯C1⁒(𝕋n)⁒βˆ₯gλ⁒(β‹…,v⁒(β‹…)+14)βˆ₯Lq⁒(𝕋n)+βˆ«π•‹ngΞ»n+1⁒(x,v+14).

By Lemma 2.3 and βˆ₯v+14βˆ₯C1⁒(𝕋n)≀516, we obtain

βˆ₯gλ⁒(β‹…,v⁒(β‹…)+14)βˆ₯Lq⁒(𝕋n)≀c1⁒βˆ₯gβˆ₯W1,p⁒(𝕋nΓ—(-1,1)).

By (1.3) and (1.4), there exists a constant c4=c4⁒(n)>0 such that

βˆ«π•‹ngΞ»n+1⁒(x,v+14)=βˆ«π•‹n∫Bn+1⁒(0,Ξ»)ηλ⁒(y,yn+1)⁒gn+1⁒(x-y,v+14-yn+1)⁒𝑑y⁒𝑑x
>βˆ«π•‹n∫Bn+1⁒(0,Ξ»)ηλ⁒(y,yn+1)⁒gn+1⁒(x-y,116)⁒𝑑y⁒𝑑x
>βˆ«π•‹n∫Bn+1⁒(0,Ξ»)ηλ⁒(y,yn+1)⁒(gn+1⁒(x-y,0)+Ξ΅16)⁒𝑑y⁒𝑑x
(2.8)>c416⁒Ρ.

By (1.2), (2.7)–(2.8), and βˆ₯vβˆ₯C1⁒(𝕋n)<Ξ΅1/2, if

Ρ<(c416⁒c1⁒c3)6=:Ρ2(n,p),

then

F⁒(14)>-c1⁒c3⁒βˆ₯vβˆ₯C1⁒(𝕋n)⁒βˆ₯gΞ»βˆ₯W1,p⁒(𝕋nΓ—(-1,1))+c416⁒Ρ
>-c1⁒c3⁒Ρ76+c416⁒Ρ
>Ρ⁒(-c1⁒c3⁒Ρ16+c416)
>0.

Similarly, we can show that F⁒(-14)<0. By Lemma 2.2 and the mean value theorem, there exists a unique constant -14<cv<14 that satisfies F⁒(cv)=0. By using Theorem 2.1, Theorem 2.4 follows. ∎

Let us define an operator T:π’œβ’(s)β†’Wave1,2⁒(𝕋n)Γ—[-14,14] by T⁒(v)=(T1⁒(v),T2⁒(v)):=(u,cv) that satisfies (2.6), where

π’œβ’(s):={w∈Wave2,q⁒(𝕋n):βˆ₯wβˆ₯W2,q⁒(𝕋n)≀s}.

Theorem 2.5.

There exist constants Ξ΅3=Ξ΅3⁒(n,p)>0 and c5=c5⁒(n,p)>0 such that, if Ξ»<18, Ξ΅<min⁑{Ξ΅2,Ξ΅3}, v∈A⁒(Ξ΅1/2), and g∈W1,p⁒(TnΓ—(-1,1);Rn+1) satisfies (1.2)–(1.4), then

βˆ₯T1⁒(v)βˆ₯W2,q⁒(𝕋n)≀c5⁒βˆ₯gβˆ₯W1,p⁒(𝕋nΓ—(-1,1)).

Proof.

We first assume that v∈C∞⁒(𝕋n)βˆ©π’œβ’(Ξ΅1/2). Using [6, Corollary 8.11], we obtain T1⁒(v)∈C∞⁒(𝕋n). Thus, we can rewrite (2.6) as

Δ⁒T1⁒(v)1+|βˆ‡β‘v|2+βˆ‡β‘T1⁒(v)β‹…βˆ‡β‘(11+|βˆ‡β‘v|2)=-ν⁒(βˆ‡β‘v)β‹…gλ⁒(x,v+T2⁒(v)).

Using [6, Theorem 9.11], we find that there exists a constant c6=c6⁒(n,p)>0 such that

βˆ₯T1(v)βˆ₯W2,q⁒(𝕋n)≀c6(βˆ₯T1(v)βˆ₯Lq⁒(𝕋n)+βˆ₯Ξ½(βˆ‡v)β‹…gΞ»(x,v+T2(v))βˆ₯Lq⁒(𝕋n)
(2.9)+βˆ₯βˆ‡T1(v)β‹…βˆ‡(11+|βˆ‡β‘v|2)βˆ₯Lq⁒(𝕋n)).

Using Lemma 2.3, we obtain

(2.10)βˆ₯ν⁒(βˆ‡β‘v)β‹…gλ⁒(x,v+T2⁒(v))βˆ₯Lq⁒(𝕋n)≀c1⁒βˆ₯gβˆ₯W1,p⁒(𝕋nΓ—(-1,1)).

Using the Sobolev inequality, we find that there exists a constant c7=c7⁒(n,p)>0 such that

βˆ₯βˆ‡β‘T1⁒(v)β‹…βˆ‡β‘(11+|βˆ‡β‘v|2)βˆ₯Lq⁒(𝕋n)≀βˆ₯T1⁒(v)βˆ₯C1⁒(𝕋n)⁒βˆ₯βˆ‡β‘(11+|βˆ‡β‘v|2)βˆ₯Lq⁒(𝕋n)
(2.11)≀c7⁒βˆ₯T1⁒(v)βˆ₯W2,q⁒(𝕋n)⁒βˆ₯vβˆ₯W2,q⁒(𝕋n).

Next, we estimate the term βˆ₯T1⁒(v)βˆ₯Lq⁒(𝕋n). If q≀2, then, by (2.2) and Lemma 2.3, we obtain

βˆ₯T1⁒(v)βˆ₯Lq⁒(𝕋n)≀c8⁒(n,p)⁒βˆ₯T1⁒(v)βˆ₯L2⁒(𝕋n)
≀c9⁒(n,p)⁒B⁒[T1⁒(v),T1⁒(v),v]12.
=c9⁒(βˆ«π•‹nβˆ‡β‘T1⁒(v)β‹…βˆ‡β‘T1⁒(v)1+|βˆ‡β‘v|2)12
=c9⁒(βˆ«π•‹nν⁒(βˆ‡β‘v)β‹…gλ⁒(x,v+T2⁒(v))⁒T1⁒(v))12
≀c10⁒(n,p)⁒βˆ₯gβˆ₯W1,p⁒(𝕋n)12⁒βˆ₯T1⁒(v)βˆ₯L∞⁒(𝕋n)12
(2.12)≀c11⁒(n,p)⁒βˆ₯gβˆ₯W1,p⁒(𝕋n)+14⁒c6⁒βˆ₯T1⁒(v)βˆ₯W2,q⁒(𝕋n).

If q>2, by (2.12) and the Riesz–Thorin theorem, we obtain

βˆ₯T1⁒(v)βˆ₯Lq⁒(𝕋n)≀βˆ₯T1⁒(v)βˆ₯L2⁒(𝕋n)1q⁒βˆ₯T1⁒(v)βˆ₯L2⁒(𝕋n)1-1q
≀c12⁒(n,p)⁒βˆ₯gβˆ₯W1,p⁒(𝕋n)12⁒q⁒βˆ₯T1⁒(v)βˆ₯L∞⁒(𝕋n)12⁒q+1-1q
(2.13)≀c13⁒(n,p)⁒βˆ₯gβˆ₯W1,p⁒(𝕋n)+14⁒c6⁒βˆ₯T1⁒(v)βˆ₯W2,q⁒(𝕋n).

By (2.9)–(2.13), there exists a constant c14=c14⁒(n,p)>0 such that

βˆ₯T1⁒(v)βˆ₯W2,q⁒(𝕋n)≀c14⁒(βˆ₯gβˆ₯W1,p⁒(𝕋nΓ—(-1,1))+βˆ₯T1⁒(v)βˆ₯W2,q⁒(𝕋n)⁒βˆ₯vβˆ₯W2,q⁒(𝕋n))+14⁒βˆ₯T1⁒(v)βˆ₯W2,q⁒(𝕋n).

If Ρ<116⁒c142, we obtain

(2.14)βˆ₯T1⁒(v)βˆ₯W2,q⁒(𝕋n)≀2⁒c14⁒βˆ₯gβˆ₯W1,p⁒(𝕋nΓ—(-1,1)).

For the general case of v∈W2,q⁒(𝕋n), suppose that {vm}mβˆˆβ„•βˆˆC∞⁒(𝕋n) converges to v in the sense of C1⁒(𝕋n). By (2.14), there exists a subsequence

{vmk}kβˆˆβ„•βŠ‚{vm}mβˆˆβ„•

such that T1⁒(vmk) converges to a function w∞∈W2,q⁒(𝕋n) in the sense of C1⁒(𝕋n), and T2⁒(vmk) converges to a constant d∞∈[-14,14]. For any Ο•βˆˆW1,2⁒(𝕋n), we obtain

βˆ«π•‹nν⁒(βˆ‡β‘v)β‹…gλ⁒(x,v+d∞)⁒ϕ-ν⁒(βˆ‡β‘vmk)β‹…gλ⁒(x,vmk+T2⁒(vmk))⁒ϕ
β‰€βˆ«π•‹n|Ο•|⁒|ν⁒(βˆ‡β‘v)-ν⁒(βˆ‡β‘vmk)|⁒|gλ⁒(x,vmk+T2⁒(vmk))|+βˆ«π•‹n|Ο•|⁒|∫vmk+T2⁒(vmk)v+dβˆžβˆ‚n+1⁑gλ⁒(x,s)|
(2.15)β†’0 (kβ†’βˆž)

and

βˆ«π•‹nβˆ‡β‘wβˆžβ‹…βˆ‡β‘Ο•1+|βˆ‡β‘v|2-βˆ‡β‘T1⁒(vmk)β‹…βˆ‡β‘Ο•1+|βˆ‡β‘vmk|2
β‰€βˆ«π•‹n(βˆ‡β‘w∞-βˆ‡β‘T1⁒(vmk))β‹…βˆ‡β‘Ο•1+|βˆ‡β‘v|2+βˆ«π•‹n(βˆ‡β‘T1⁒(vmk)β‹…βˆ‡β‘Ο•)⁒(11+|βˆ‡β‘v|2-11+|βˆ‡β‘vmk|2)
(2.16)β†’0 (kβ†’βˆž).

By (2.15) and (2.16), we obtain

βˆ«π•‹nβˆ‡β‘wβˆžβ‹…βˆ‡β‘Ο•1+|βˆ‡β‘v|2-ν⁒(βˆ‡β‘v)β‹…gλ⁒(x,v+d∞)⁒ϕ
=limkβ†’βˆžβ‘βˆ«π•‹nβˆ‡β‘T1⁒(vmk)β‹…βˆ‡β‘Ο•1+|βˆ‡β‘vmk|2-ν⁒(βˆ‡β‘vmk)β‹…gλ⁒(x,vmk+T2⁒(vmk))⁒ϕ
(2.17)=0,

that is, T⁒(v)=(w∞,d∞). By (2.14) and (2.17), Theorem 2.5 follows. ∎

Next, we provide the fixed-point theorem, which is needed later ([1, Theorem 1]). An operator T:Xβ†’A is considered weakly sequentially continuous if, for every sequence {xm}mβˆˆβ„•βŠ‚X and x∞∈X such that xm weakly converges to x∞, T⁒(xm) weakly converges to T⁒(x∞).

Theorem 2.6.

Let X be a metrizable, locally convex topological vector space and let Ξ© be a weakly compact convex subset of X. Then any weakly sequentially continuous map T:Ξ©β†’Ξ© has a fixed point.

We first prove Theorem 1.1 in the case of gΞ».

Theorem 2.7.

There exists a constant Ρ4=Ρ4⁒(n,p)>0 such that, if λ<18 and Ρ<Ρ4, then

g∈W1,p⁒(𝕋nΓ—(-1,1);ℝn+1)

satisfies (1.2)–(1.4). Then there exists a function uλ∈W2,q⁒(Tn) such that

(2.18)-div⁑(βˆ‡β‘uΞ»1+|βˆ‡β‘uΞ»|2)=ν⁒(βˆ‡β‘uΞ»)β‹…gλ⁒(x,uλ⁒(x)) on ⁒𝕋n.

Proof.

The set W2,q⁒(𝕋n) is a metrizable, locally convex topological vector space, and the set π’œβ’(Ξ΅1/2) is a weakly compact convex subset of W2,q⁒(𝕋n). By (1.2) and Theorem 2.5, if Ξ΅<min{Ξ΅2,Ξ΅3,c5-6}=:Ξ΅4, we have

βˆ₯T1⁒(v)βˆ₯W2,q⁒(𝕋n)≀c5⁒βˆ₯gβˆ₯W1,p⁒(𝕋nΓ—(-1,1))
≀c5⁒Ρ16⁒Ρ12
(2.19)≀Ρ12 for any ⁒vβˆˆπ’œβ’(Ξ΅12),

that is, T1⁒(π’œβ’(Ξ΅1/2))βŠ‚π’œβ’(Ξ΅1/2). Suppose that {vm}mβˆˆβ„• weakly converges to v∞ in the sense of W2,q⁒(𝕋n). According to Theorem 2.5, there exists a subsequence {vmk}kβˆˆβ„•βŠ‚{vm}mβˆˆβ„• such that T1⁒(vmk) weakly converges to a function w∞∈W2,q⁒(𝕋n) in the sense of W2,q⁒(𝕋n), and T2⁒(vmk) converges to a constant d∞∈[-14,14]. By the same argument (2.15)–(2.17), for any Ο•βˆˆW2,q⁒(𝕋n),

βˆ«π•‹nβˆ‡β‘wβˆžβ‹…βˆ‡β‘Ο•1+|βˆ‡β‘v∞|2-ν⁒(βˆ‡β‘v∞)β‹…gλ⁒(x,v∞+d∞)⁒ϕ=0,

that is, we obtain limkβ†’βˆžβ‘T1⁒(vmk)=T1⁒(v∞) by the uniqueness of solution of Theorem 2.4. Therefore, every convergent subsequence of {T1⁒(vm)} converges to T1⁒(v∞), and T1 is a weakly sequentially continuous map. Using Theorem 2.6, we obtain a function vλ∈Wave2,q⁒(𝕋n) satisfying

-div⁑(βˆ‡β‘vΞ»1+|βˆ‡β‘vΞ»|2)=ν⁒(βˆ‡β‘vΞ»)β‹…gλ⁒(x,vλ⁒(x)+T2⁒(vΞ»)) on ⁒𝕋n,

that is, uΞ»:=vΞ»+T2⁒(vΞ»)∈W2,q⁒(𝕋n) satisfying (2.18). ∎

Proof of Theorem 1.1.

Suppose uλ∈W2,q⁒(𝕋n) satisfies (2.18). By Theorem 2.5, there exists a convergent subsequence

{uΞ»k}kβˆˆβ„•βŠ‚{uΞ»}0<Ξ»<18

with a limit u∞∈W2,q⁒(𝕋n) in the sense of C1⁒(𝕋n) and Ξ»kβ†’0. We show that u∞ satisfies (1.5). For any Ο•βˆˆW1,2⁒(𝕋n), we obtain

βˆ«π•‹n-div⁑(βˆ‡β‘uΞ»k1+|βˆ‡β‘uΞ»k|2-βˆ‡β‘u∞1+|βˆ‡β‘u∞|2)⁒ϕ=βˆ«π•‹n(βˆ‡β‘uΞ»k1+|βˆ‡β‘uΞ»k|2-βˆ‡β‘u∞1+|βˆ‡β‘u∞|2)β‹…βˆ‡β‘Ο•
(2.20)β†’0.

Using Lemma 2.3, we have

βˆ«π•‹nν⁒(βˆ‡β‘uΞ»k)β‹…gΞ»k⁒(x,uΞ»k)-ν⁒(βˆ‡β‘u∞)β‹…g⁒(x,u∞)
=βˆ«π•‹n(ν⁒(βˆ‡β‘uΞ»k)-ν⁒(βˆ‡β‘u∞))β‹…gΞ»k⁒(x,uΞ»k)+βˆ«π•‹nν⁒(βˆ‡β‘u∞)β‹…(gΞ»k⁒(x,uΞ»k)-g⁒(x,uΞ»k))
   +βˆ«π•‹nν⁒(βˆ‡β‘u∞)β‹…(g⁒(x,uΞ»k)-7⁒g⁒(x,u∞))
=c1⁒βˆ₯ν⁒(βˆ‡β‘uΞ»k)-ν⁒(βˆ‡β‘u∞)βˆ₯C0⁒(𝕋n)⁒βˆ₯gΞ»kβˆ₯W1,p⁒(𝕋nΓ—(-1,1))+c1⁒βˆ₯gΞ»k-g∞βˆ₯W1,p⁒(𝕋nΓ—(-1,1))+βˆ«π•‹n|∫u∞uΞ»kβˆ‚n+1⁑g⁒(x,s)|
(2.21)β†’0.

By (2.20) and (2.21), we obtain

βˆ«π•‹n-div⁑(βˆ‡β‘u∞1+|βˆ‡β‘u∞|2)⁒ϕ-ν⁒(βˆ‡β‘u∞)β‹…g⁒(x,u∞)⁒ϕ
=limkβ†’βˆžβ‘βˆ«π•‹n-div⁑(βˆ‡β‘uΞ»k1+|βˆ‡β‘uΞ»k|2)⁒ϕ-ν⁒(βˆ‡β‘uΞ»k)β‹…gΞ»k⁒(x,uΞ»k)⁒ϕ
β†’0.

Thus, u∞ satisfies (1.5) using the fundamental lemma of the calculus of variations. By (2.19), we obtain

βˆ₯u∞-βˆ«π•‹nu∞⁒(y)⁒𝑑yβˆ₯W2,q⁒(𝕋n)≀Ρ12,

and Theorem 1.1 follows. ∎

References

[1] O. Arino, S. Gautier and J.-P. Penot, A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkcial. Ekvac. 27 (1984), no. 3, 273–279. Search in Google Scholar

[2] T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monogr. Math., Springer, Berlin, 1998. 10.1007/978-3-662-13006-3Search in Google Scholar

[3] M. Bergner, The Dirichlet problem for graphs of prescribed anisotropic mean curvature in ℝn+1, Analysis (Munich) 28 (2008), no. 2, 149–166. Search in Google Scholar

[4] D. Denny, A unique solution to a nonlinear elliptic equation, J. Math. Anal. Appl. 365 (2010), no. 2, 467–482. 10.1016/j.jmaa.2009.10.073Search in Google Scholar

[5] M. Feng, Periodic solutions for prescribed mean curvature LiΓ©nard equation with a deviating argument, Nonlinear Anal. Real World Appl. 13 (2012), no. 3, 1216–1223. 10.1016/j.nonrwa.2011.09.015Search in Google Scholar

[6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren Math. Wiss. 224, Springer, Berlin, 1983. Search in Google Scholar

[7] W. Li and Z. Liu, Exact number of solutions of a prescribed mean curvature equation, J. Math. Anal. Appl. 367 (2010), no. 2, 486–498. 10.1016/j.jmaa.2010.01.055Search in Google Scholar

[8] S. Lu, Homoclinic solutions for a class of prescribed mean curvature LiΓ©nard equations, Adv. Difference Equ. 2014 (2014), Paper No. 244. 10.1186/s13662-015-0579-3Search in Google Scholar

[9] T. Marquardt, Remark on the anisotropic prescribed mean curvature equation on arbitrary domains, Math. Z. 264 (2010), no. 3, 507–511. 10.1007/s00209-009-0476-0Search in Google Scholar

[10] H. Pan, One-dimensional prescribed mean curvature equation with exponential nonlinearity, Nonlinear Anal. 70 (2009), no. 2, 999–1010. 10.1016/j.na.2008.01.027Search in Google Scholar

[11] H. Pan and R. Xing, Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations. II, Nonlinear Anal. 74 (2011), no. 11, 3751–3768. 10.1016/j.na.2011.03.020Search in Google Scholar

[12] Y. Tonegawa and Y. Tsukamoto, A diffused interface with the advection term in a Sobolev space, Calc. Var. Partial Differential Equations 59 (2020), no. 6, Paper No. 184. 10.1007/s00526-020-01860-zSearch in Google Scholar

[13] Y. Tsukamoto, The Dirichlet problem for a prescribed mean curvature equation, Hiroshima Math. J. 50 (2020), no. 3, 325–337. 10.32917/hmj/1607396492Search in Google Scholar

[14] M. Zheng and J. Li, Nontrivial homoclinic solutions for prescribed mean curvature Rayleigh equations, Adv. Difference Equ. 2015 (2015), Paper No. 77. 10.1186/s13662-015-0417-7Search in Google Scholar

Received: 2020-11-12
Accepted: 2021-04-01
Published Online: 2021-04-19
Published in Print: 2021-05-01

Β© 2021 Walter de Gruyter GmbH, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2020-0054/html?lang=en
Scroll to top button