Home A (p,ν)-extension of Srivastava's triple hypergeometric function H_B and its properties
Article
Licensed
Unlicensed Requires Authentication

A (p,ν)-extension of Srivastava's triple hypergeometric function H_B and its properties

  • Showkat Ahmad Dar EMAIL logo and R. B. Paris
Published/Copyright: February 20, 2021

Abstract

In this paper, we obtain a (p,ν)-extension of Srivastava’s triple hypergeometric function HB(), by using the extended beta function Bp,ν(x,y) introduced in [R. K. Parmar, P. Chopra and R. B. Paris, On an extension of extended beta and hypergeometric functions, J. Class. Anal. 11 2017, 2, 91–106]. We give some of the main properties of this extended function, which include several integral representations involving Exton’s hypergeometric function, the Mellin transform, a differential formula, recursion formulas and a bounded inequality.

References

[1] M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19–32. 10.1016/S0377-0427(96)00102-1Search in Google Scholar

[2] M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2004), no. 2, 589–602. 10.1016/j.amc.2003.09.017Search in Google Scholar

[3] J. Choi, A. Hasanov, H. M. Srivastava and M. Turaev, Integral representations for Srivastava’s triple hypergeometric functions, Taiwanese J. Math. 15 (2011), no. 6, 2751–2762. 10.11650/twjm/1500406495Search in Google Scholar

[4] J. Choi, A. Hasanov and M. Turaev, Integral representations for Srivastava’s hypergeometric function HA, Honam Math. J. 34 (2012), no. 1, 113–124. 10.5831/HMJ.2012.34.1.113Search in Google Scholar

[5] J. Choi, A. Hasanov and M. Turaev, Integral representations for Srivastava’s hypergeometric function HB, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 19 (2012), no. 2, 137–145. 10.7468/jksmeb.2012.19.2.137Search in Google Scholar

[6] J. Choi, A. Hasanov and M. Turaev, Integral representations for Srivastava’s hypergeometric function HC, Honam Math. J. 34 (2012), no. 4, 473–482. 10.5831/HMJ.2012.34.4.473Search in Google Scholar

[7] H. Exton, Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), no. 2, 113–119. Search in Google Scholar

[8] P. W. Karlsson, Regions of convergence for hypergeometric series in three variables, Math. Scand. 34 (1974), 241–248. 10.7146/math.scand.a-11526Search in Google Scholar

[9] F. Oberhettinger, Tables of Mellin Transforms, Springer, New York, 1974. 10.1007/978-3-642-65975-1Search in Google Scholar

[10] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University, Cambridge, 2010. Search in Google Scholar

[11] M. A. Özarslan, Some remarks on extended hypergeometric, extended confluent hypergeometric and extended Appell’s functions, J. Comput. Anal. Appl. 14 (2012), no. 6, 1148–1153. Search in Google Scholar

[12] R. K. Parmar, P. Chopra and R. B. Paris, On an extension of extended beta and hypergeometric functions, J. Class. Anal. 11 (2017), no. 2, 91–106. 10.7153/jca-2017-11-07Search in Google Scholar

[13] H. M. Srivastava, Hypergeometric functions of three variables, Gaṇita 15 (1964), 97–108. Search in Google Scholar

[14] H. M. Srivastava, Some integrals representing triple hypergeometric functions, Rend. Circ. Mat. Palermo (2) 16 (1967), 99–115. 10.1007/BF02844089Search in Google Scholar

[15] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Ser. Math. Appl., Ellis Horwood, New York, 1985. Search in Google Scholar

[16] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Ser. Math. Appl., Ellis Horwood, New York, 1984. Search in Google Scholar

Received: 2018-11-15
Accepted: 2021-01-19
Published Online: 2021-02-20
Published in Print: 2021-05-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2018-0070/html
Scroll to top button