Abstract
We find the equations of the two interior nodes (weighted Fermat–Torricelli points) with respect to the weighted Steiner problem for four points determining a tetrahedron in
Acknowledgements
The author is grateful to the anonymous referee for his/her valuable comments, which helped him a lot to improve the quality of the paper.
References
[1] A. D. Aleksandrov, A. N. Kolmogorov and M. A. Lavrent’ev, Mathematics, Its Content, Methods and Meaning, Dover, Mineola, 1999. Search in Google Scholar
[2] A. Berele and S. Catoiu, The Fermat–Torricelli theorem in convex geometry, J. Geom. 111 (2020), no. 2, Paper No. 22. 10.1007/s00022-020-00535-6Search in Google Scholar
[3] V. Boltyanski, H. Martini and V. Soltan, Geometric Methods and Optimization Problems, Comb. Optim. 4, Kluwer Academic, Dordrecht, 1999. 10.1007/978-1-4615-5319-9Search in Google Scholar
[4] D. Cieslik, Steiner Minimal Trees, Nonconvex Optim. Appl. 23, Kluwer Academic, Dordrecht, 1998. 10.1007/978-1-4757-6585-4Search in Google Scholar
[5] R. Courant and H. Robbins, What Is Mathematics?, Oxford University, New York, 1951. Search in Google Scholar
[6] E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Appl. Math. 16 (1968), 1–29. 10.1137/0116001Search in Google Scholar
[7] S. Gueron and R. Tessler, The Fermat–Steiner problem, Amer. Math. Monthly 109 (2002), no. 5, 443–451. 10.1080/00029890.2002.11919871Search in Google Scholar
[8] A. O. Ivanov and A. A. Tuzhilin, Minimal Networks. The Steiner Problem and its Generalizations, CRC Press, Boca Raton, 1994. Search in Google Scholar
[9] A. O. Ivanov and A. A. Tuzhilin, Branching Solutions to One-Dimensional Variational Problems, World Scientific, River Edge, 2001. 10.1142/4210Search in Google Scholar
[10] Y. S. Kupitz and H. Martini, Geometric aspects of the generalized Fermat–Torricelli problem, Intuitive Geometry (Budapest 1995), Bolyai Soc. Math. Stud. 6, János Bolyai Mathematical Society, Budapest (1997), 55–127. Search in Google Scholar
[11] H. M. Lufkin, he minimal property of the isogonal center of a triangle, Amer. Math. Monthly 30 (1923), no. 3, 127–131. 10.1080/00029890.1923.11986216Search in Google Scholar
[12] C. Mese and S. Yamada, The parameterized Steiner problem and the singular plateau Problem via energy, Trans. Amer. Math. Soc. 358 (2006), no. 7, 2875–2895. 10.1090/S0002-9947-06-04089-XSearch in Google Scholar
[13] F. Plastria, Four-point Fermat location problems revisited. New proofs and extensions of old results, IMA J. Manag. Math. 17 (2006), no. 4, 387–396. 10.1093/imaman/dpl007Search in Google Scholar
[14] E. L. Rees, Graphical discussion of the roots of a quartic equation, Amer. Math. Monthly 29 (1922), no. 2, 51–55. 10.1080/00029890.1922.11986100Search in Google Scholar
[15] J. H. Rubinstein, D. A. Thomas and J. Weng, Minimum networks for four points in space, Geom. Dedicata 93 (2002), 57–70. 10.1023/A:1020389712969Search in Google Scholar
[16] D. E. Smith and M. L. Latham, The Geometry of Rene Descartes, Dover, New York, 1954. Search in Google Scholar
[17] J. M. Smith, Y. Jang and M. K. Kim, Steiner minimal trees, twist angles and the protein folding problem, Proteins 66 (2007), 889–902. 10.1002/prot.21257Search in Google Scholar PubMed
[18] B. Toppur and J. M. Smith, A sausage heuristic for Steiner minimal trees in three-dimensional Euclidean space, J. Math. Model. Algorithms 4 (2005), no. 2, 199–217. 10.1007/s10852-004-6390-xSearch in Google Scholar
[19] J. V. Uspensky, Theory of Equations, McGraw-Hill, New York, 1948. Search in Google Scholar
[20] J. D. Watson, The Double Helix: A Personal Account of the Discovery of the Structure of DNA, Weidenfeld and Nicolson, London, 1968. 10.1063/1.3035117Search in Google Scholar
[21] J. D. Watson and F. H. Crick, A structure for deoxyribose nucleic acids, Nature 171 (1953), 737–738. 10.1007/978-3-662-47150-0_4Search in Google Scholar
[22] A. Zachos and G. Zouzoulas, The weighted Fermat-Torricelli problem for tetrahedra and an “inverse” problem, J. Math. Anal. Appl. 353 (2009), no. 1, 114–120. 10.1016/j.jmaa.2008.11.057Search in Google Scholar
[23] A. N. Zachos, A plasticity principle of closed hexahedra in the three-dimensional Euclidean space, Acta Appl. Math. 125 (2013), 11–26. 10.1007/s10440-012-9778-zSearch in Google Scholar
[24] A. N. Zachos, A plasticity principle of convex quadrilaterals on a convex surface of bounded specific curvature, Acta Appl. Math. 129 (2014), 81–134. 10.1007/s10440-013-9831-6Search in Google Scholar
[25] A. N. Zachos, A plasticity principle of some generalized Gauss trees, Analysis (Berlin) 34 (2014), no. 4, 339–352. 10.1515/anly-2012-1207Search in Google Scholar
[26]
A. N. Zachos,
The plasticity of non-overlapping convex sets in
[27] A. N. Zachos, The plasticity of some mass transportation networks in the three dimensional Euclidean space, J. Convex Anal. 27 (2020), no. 3, 989–1002. Search in Google Scholar
[28] A. N. Zachos and G. Zouzoulas, An evolutionary structure of convex quadrilaterals, J. Convex Anal. 15 (2008), no. 2, 411–426. Search in Google Scholar
[29] A. N. Zachos and G. Zouzoulas, The weighted Fermat–Torricelli problem and an “inverse” problem, J. Convex Anal. 15 (2008), no. 1, 55–62. Search in Google Scholar
[30] A. N. Zachos and G. Zouzoulas, An evolutionary structure of convex quadrilaterals. Part III, J. Convex Anal. 25 (2018), no. 3, 759–765. Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston