Abstract
We prove the existence of global analytic solutions to the nonlinear Schrödinger equation in one dimension for a certain type of analytic initial data in
Acknowledgements
The authors would like to thank Alejandro J. Castro, whose comments provided the inspiration for this work, and to Achenef Tesfahun, who provided several useful comments.
References
[1] J. L. Bona, Z. Grujić and H. Kalisch, Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 6, 783–797. 10.1016/j.anihpc.2004.12.004Suche in Google Scholar
[2] J. L. Bona, Z. Grujić and H. Kalisch, Global solutions of the derivative Schrödinger equation in a class of functions analytic in a strip, J. Differential Equations 229 (2006), no. 1, 186–203. 10.1016/j.jde.2006.04.013Suche in Google Scholar
[3] J. L. Bona, Z. Grujić and H. Kalisch, A KdV-type Boussinesq system: From the energy level to analytic spaces, Discrete Contin. Dyn. Syst. 26 (2010), no. 4, 1121–1139. 10.3934/dcds.2010.26.1121Suche in Google Scholar
[4] D. O. da Silva, A result on a Dirac-type equation in spaces of analytic functions, Analysis (Berlin) 37 (2017), no. 2, 69–75. 10.1515/anly-2017-0008Suche in Google Scholar
[5] D. O. da Silva, The Thirring model in spaces of analytic functions, Adv. Pure Appl. Math. 9 (2018), no. 2, 153–158. 10.1515/apam-2017-0005Suche in Google Scholar
[6] J. Gorsky, A. A. Himonas, C. Holliman and G. Petronilho, The Cauchy problem of a periodic higher order KdV equation in analytic Gevrey spaces, J. Math. Anal. Appl. 405 (2013), no. 2, 349–361. 10.1016/j.jmaa.2013.04.015Suche in Google Scholar
[7] Z. Grujić and H. Kalisch, Local well-posedness of the generalized Korteweg–de Vries equation in spaces of analytic functions, Differential Integral Equations 15 (2002), no. 11, 1325–1334. 10.57262/die/1356060724Suche in Google Scholar
[8] Z. Grujić and H. Kalisch, The derivative nonlinear Schrödinger equation in analytic classes, J. Nonlinear Math. Phys. 10 (2003), no. 1, 62–71. 10.2991/jnmp.2003.10.s1.5Suche in Google Scholar
[9] H. Hannah, A. A. Himonas and G. Petronilho, Gevrey regularity in time for generalized KdV type equations, Recent Progress on Some Problems in Several Complex Variables and Partial Differential Equations, Contemp. Math. 400, American Mathematical Society, Providence (2006), 117–127. 10.1090/conm/400/07535Suche in Google Scholar
[10] H. Hannah, A. A. Himonas and G. Petronilho, Anisotropic Gevrey regularity for mKdV on the circle, Discrete Contin. Dyn. Syst. 1 (2011), 634–642. Suche in Google Scholar
[11] N. Hayashi, Global existence of small analytic solutions to nonlinear Schrödinger equations, Duke Math. J. 60 (1990), no. 3, 717–727. 10.1215/S0012-7094-90-06029-6Suche in Google Scholar
[12] N. Hayashi and S. Saitoh, Analyticity and global existence of small solutions to some nonlinear Schrödinger equations, Comm. Math. Phys. 129 (1990), no. 1, 27–41. 10.1007/BF02096777Suche in Google Scholar
[13] A. A. Himonas and G. Petronilho, Analytic well-posedness of periodic gKdV, J. Differential Equations 253 (2012), no. 11, 3101–3112. 10.1016/j.jde.2012.08.024Suche in Google Scholar
[14] Y. Katznelson, An introduction to harmonic analysis, 2nd corrected ed., Dover, New York, 1976. Suche in Google Scholar
[15] Q. Li, Local well-posedness for the periodic Korteweg–de Vries equation in analytic Gevrey classes, Commun. Pure Appl. Anal. 11 (2012), no. 3, 1097–1109. 10.3934/cpaa.2012.11.1097Suche in Google Scholar
[16] K. Nakamitsu, Analytic finite energy solutions of the nonlinear Schrödinger equation, Comm. Math. Phys. 260 (2005), no. 1, 117–130. 10.1007/s00220-005-1405-7Suche in Google Scholar
[17] S. Selberg and D. O. da Silva, Lower bounds on the radius of spatial analyticity for the KdV equation, Ann. Henri Poincaré 18 (2017), no. 3, 1009–1023. 10.1007/s00023-016-0498-1Suche in Google Scholar
[18] S. Selberg and A. Tesfahun, On the radius of spatial analyticity for the 1d Dirac–Klein–Gordon equations, J. Differential Equations 259 (2015), no. 9, 4732–4744. 10.1016/j.jde.2015.06.007Suche in Google Scholar
[19] T. Tao, Nonlinear Dispersive Equations, CBMS Reg. Conf. Ser. Math. 106, American Mathematical Society, Providence, 2006. 10.1090/cbms/106Suche in Google Scholar
[20] A. Tesfahun, On the radius of spatial analyticity for cubic nonlinear Schrödinger equations, J. Differential Equations 263 (2017), no. 11, 7496–7512. 10.1016/j.jde.2017.08.009Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- King type generalization of Baskakov operators based on (𝑝, 𝑞) calculus with better approximation properties
- Well-posedness of problem with parameter for an integro-differential equation
- On the growth analysis of meromorphic solutions of finite ϕ-order of linear difference equations
- Global analytic solutions for the nonlinear Schrödinger equation
Artikel in diesem Heft
- Frontmatter
- King type generalization of Baskakov operators based on (𝑝, 𝑞) calculus with better approximation properties
- Well-posedness of problem with parameter for an integro-differential equation
- On the growth analysis of meromorphic solutions of finite ϕ-order of linear difference equations
- Global analytic solutions for the nonlinear Schrödinger equation