Startseite Characterizations of ideal cluster points
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Characterizations of ideal cluster points

  • Paolo Leonetti ORCID logo EMAIL logo und Fabio Maccheroni
Veröffentlicht/Copyright: 26. Februar 2019
Analysis
Aus der Zeitschrift Analysis Band 39 Heft 1

Abstract

Given an ideal on ω, we prove that a sequence in a topological space X is -convergent if and only if there exists a “big” -convergent subsequence. Then we study several properties and show two characterizations of the set of -cluster points as classical cluster points of a filter on X and as the smallest closed set containing “almost all” the sequence. As a consequence, we obtain that the underlying topology τ coincides with the topology generated by the pair (τ,).

Acknowledgements

The authors are grateful to Szymon Głab (Łódź University of Technology, PL) and Ondřej Kalenda (Charles University, Prague) for several useful comments.

References

[1] H. Albayrak and S. Pehlivan, Statistical convergence and statistical continuity on locally solid Riesz spaces, Topology Appl. 159 (2012), no. 7, 1887–1893. 10.1016/j.topol.2011.04.026Suche in Google Scholar

[2] M. Balcerzak, K. Dems and A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), no. 1, 715–729. 10.1016/j.jmaa.2006.05.040Suche in Google Scholar

[3] M. Balcerzak, S. Gła̧b and A. Wachowicz, Qualitative properties of ideal convergent subsequences and rearrangements, Acta Math. Hungar. 150 (2016), no. 2, 312–323. 10.1007/s10474-016-0644-8Suche in Google Scholar

[4] M. Balcerzak and P. Leonetti, On the relationship between ideal cluster points and ideal limit points, Topology Appl. 252 (2019), 178–190. 10.1016/j.topol.2018.11.022Suche in Google Scholar

[5] P. Barbarski, R. Filipów, N. Mrożek and P. Szuca, Uniform density u and u-convergence on a big set, Math. Commun. 16 (2011), no. 1, 125–130. Suche in Google Scholar

[6] N. Bourbaki, General Topology. Chapters 1–4, Elem. Math. (Berlin), Springer, Berlin, 1998. Suche in Google Scholar

[7] J. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), no. 1–2, 47–63. 10.1524/anly.1988.8.12.47Suche in Google Scholar

[8] J. Connor and J. Kline, On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197 (1996), no. 2, 392–399. 10.1006/jmaa.1996.0027Suche in Google Scholar

[9] P. Das, Some further results on ideal convergence in topological spaces, Topology Appl. 159 (2012), no. 10–11, 2621–2626. 10.1016/j.topol.2012.04.007Suche in Google Scholar

[10] G. Di Maio and L. D. R. Kočinac, Statistical convergence in topology, Topology Appl. 156 (2008), no. 1, 28–45. 10.1016/j.topol.2008.01.015Suche in Google Scholar

[11] I. Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702, 1–177. 10.1090/memo/0702Suche in Google Scholar

[12] R. Filipów, N. Mrożek, I. Recław and P. Szuca, Ideal convergence of bounded sequences, J. Symb. Log. 72 (2007), no. 2, 501–512. 10.2178/jsl/1185803621Suche in Google Scholar

[13] A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math. 95 (1981), no. 2, 293–305. 10.2140/pjm.1981.95.293Suche in Google Scholar

[14] J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301–313. 10.1524/anly.1985.5.4.301Suche in Google Scholar

[15] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1187–1192. 10.1090/S0002-9939-1993-1181163-6Suche in Google Scholar

[16] J. A. Fridy and J. Li, Matrix transformations of statistical cores of complex sequences, Analysis (Munich) 20 (2000), no. 1, 15–34. Suche in Google Scholar

[17] J. A. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3625–3631. 10.1090/S0002-9939-97-04000-8Suche in Google Scholar

[18] A. Güncan, M. A. Mamedov and S. Pehlivan, Statistical cluster points of sequences in finite dimensional spaces, Czechoslovak Math. J. 54(129) (2004), no. 1, 95–102. 10.1023/B:CMAJ.0000027250.19041.72Suche in Google Scholar

[19] P. Kostyrko, M. Mačaj, T. Šalát and O. Strauch, On statistical limit points, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2647–2654. 10.1090/S0002-9939-00-05891-3Suche in Google Scholar

[20] P. Kostyrko, T. Šalát and W. A. A. Wilczyński, -convergence, Real Anal. Exchange 26 (2000/01), no. 2, 669–685. 10.2307/44154069Suche in Google Scholar

[21] A. Kwela and J. Tryba, Homogeneous ideals on countable sets, Acta Math. Hungar. 151 (2017), no. 1, 139–161. 10.1007/s10474-016-0669-zSuche in Google Scholar

[22] P. Leonetti, Continuous projections onto ideal convergent sequences, Results Math. 73 (2018), no. 3, Article ID 114. 10.1007/s00025-018-0876-8Suche in Google Scholar

[23] P. Leonetti, Thinnable ideals and invariance of cluster points, Rocky Mountain J. Math. 48 (2018), no. 6, 1951–1961. 10.1216/RMJ-2018-48-6-1951Suche in Google Scholar

[24] P. Leonetti, Invariance of ideal limit points, Topology Appl. 252 (2019), 169–177. 10.1016/j.topol.2018.11.016Suche in Google Scholar

[25] P. Leonetti, H. I. Miller and L. Miller van Wieren, Duality between measure and category of almost all subsequences of a given sequence, Period. Math. Hungar. (2018), 10.1007/s10998-018-0255-y. 10.1007/s10998-018-0255-ySuche in Google Scholar

[26] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. 26, American Mathematical Society, New York, 1940. 10.1090/coll/026Suche in Google Scholar

[27] I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 1, 141–145. 10.1017/S0305004100065312Suche in Google Scholar

[28] M. A. Mamedov and S. Pehlivan, Statistical cluster points and turnpike theorem in nonconvex problems, J. Math. Anal. Appl. 256 (2001), no. 2, 686–693. 10.1006/jmaa.2000.7061Suche in Google Scholar

[29] M. Marinacci, An axiomatic approach to complete patience and time invariance, J. Econom. Theory 83 (1998), no. 1, 105–144. 10.1006/jeth.1997.2451Suche in Google Scholar

[30] H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1811–1819. 10.1090/S0002-9947-1995-1260176-6Suche in Google Scholar

[31] F. Móricz, Statistical convergence of multiple sequences, Arch. Math. (Basel) 81 (2003), no. 1, 82–89. 10.1007/s00013-003-0506-9Suche in Google Scholar

[32] M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), no. 1, 223–231. 10.1007/978-81-322-1611-7_7Suche in Google Scholar

[33] A. Nabiev, S. Pehlivan and M. Gürdal, On -Cauchy sequences, Taiwanese J. Math. 11 (2007), no. 2, 569–576. Suche in Google Scholar

[34] F. Nuray and W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), no. 2, 513–527. 10.1006/jmaa.2000.6778Suche in Google Scholar

[35] G. Pólya, Untersuchungen über Lücken und Singularitäten von Potenzreihen, Math. Z. 29 (1929), no. 1, 549–640. 10.1007/BF01180553Suche in Google Scholar

Received: 2018-12-30
Accepted: 2019-02-04
Published Online: 2019-02-26
Published in Print: 2019-03-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/anly-2019-0001/pdf
Button zum nach oben scrollen