Startseite Combined mixed finite element and nonconforming finite volume methods for flow and transport in porous media
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Combined mixed finite element and nonconforming finite volume methods for flow and transport in porous media

  • Omar El Moutea EMAIL logo und Hassan El Amri
Veröffentlicht/Copyright: 23. Juli 2021
Analysis
Aus der Zeitschrift Analysis Band 41 Heft 3

Abstract

This paper is concerned with numerical methods for a coupled system of two partial differential equations (PDEs), modeling flow and transport of a contaminant in porous media. This coupled system, arising in modeling of flow and transport in heterogeneous porous media, includes two types of equations: an elliptic and a diffusion-convection equation. We focus on miscible flow in heterogeneous porous media. We use the mixed finite element method for the Darcy flow equation over triangles, and for the concentration equation, we use nonconforming finite volume methods in unstructured mesh. Finally, we show the existence and uniqueness of a solution of this coupled scheme and demonstrate the effectiveness of the methodology by a series of numerical examples.

MSC 2010: 65D15

References

[1] M. Afif and B. Amaziane, Convergence of finite volume schemes for a degenerate convection- diffusion equation arising in flow in porous media, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 46, 5265–5286. 10.1016/S0045-7825(02)00458-9Suche in Google Scholar

[2] M. Afif and B. Amaziane, Numerical simulation of two-phase flow through heterogeneous porous media, Numer. Algorithms 34 (2003), 117–125. 10.1023/B:NUMA.0000005357.26583.3eSuche in Google Scholar

[3] B. Amaziane and M. El Ossmani, Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods, Numer. Methods Partial Differential Equations 24 (2008), no. 3, 799–832. 10.1002/num.20291Suche in Google Scholar

[4] B. Amaziane and J. Koebbe, JHomogenizer: A computational tool for upscaling permeability for flow in heterogeneous porous media, Comput. Geosci. 10 (2006), no. 4, 343–359. 10.1007/s10596-006-9028-4Suche in Google Scholar

[5] I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on non-orthogonal curvilinear grids for multi-phase flow, ECMOR IV—4th European Conference on the Mathematics of Oil Recovery, European Association of Geoscientists & Engineers, Houten (1994), 10.3997/2214-4609.201411179. 10.3997/2214-4609.201411179Suche in Google Scholar

[6] A. Badea and A. Bourgeat, Homogenization of two phase flow through randomly heterogeneous porous media, Z. Angew. Math. Mech. 76 (1996), 81–84. Suche in Google Scholar

[7] A. Bourgeat and M. Kern, Simulation of transport around a nuclear waste disposal site: The couplex test cases, Comput. Geosci. 8 (2004), 81–82. 10.1023/B:COMG.0000035097.89798.f9Suche in Google Scholar

[8] F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities, SIAM J. Numer. Anal. 46 (2008), no. 6, 3032–3070. 10.1137/060666196Suche in Google Scholar

[9] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York, 1991. 10.1007/978-1-4612-3172-1Suche in Google Scholar

[10] D. Bürkle and M. Ohlberger, Adaptive finite volume methods for displacement problems in porous media, Comput. Vis. Sci. 5 (2002), no. 2, 95–106. 10.1007/s00791-002-0091-7Suche in Google Scholar

[11] G. Chavent and J. Jaffre, Mathematical Models and Finite Elements for Reservoir Simulation, North-Holland, Amsterdam, 1986. Suche in Google Scholar

[12] Z. Chen and R. E. Ewing, Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment, American Mathematical Society, Providence, 2002. 10.1090/conm/295Suche in Google Scholar

[13] S.-H. Chou, D. Y. Kwak and K. Y. Kim, A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: The overlapping covolume case, SIAM J. Numer. Anal. 39 (2001), no. 4, 1170–1196. 10.1137/S003614290037544XSuche in Google Scholar

[14] K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, M2AN Math. Model. Numer. Anal. 39 (2005), no. 6, 1203–1249. 10.1051/m2an:2005047Suche in Google Scholar

[15] L. J. Durlofsky, Upscaling and gridding of geologically complex systems, Lecture Notes, Stanford University, 2005. Suche in Google Scholar

[16] O. El Moutea and H. El Amri, Combined mixed finite element, nonconforming finite volume methods for flow and transport -nitrate- in porous media, International Conference on Advanced Intelligent Systems for Sustainable Development, Springer, Cham (2018), 383–392. 10.1007/978-3-030-11928-7_34Suche in Google Scholar

[17] R. E. Ewing, The Mathematics of Reservoir Simulation, SIAM, Philadelphia, 1983. 10.1137/1.9781611971071Suche in Google Scholar

[18] R. Eymard and T. Gallouët, Convergence d’un schéma de type éléments finis–volumes finis pour un système formé d’une équation elliptique et d’une équation hyperbolique, RAIRO Modél. Math. Anal. Numér. 27 (1993), no. 7, 843–861. 10.1051/m2an/1993270708431Suche in Google Scholar

[19] R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes, IMA J. Numer. Anal. 18 (1998), no. 4, 563–594. 10.1093/imanum/18.4.563Suche in Google Scholar

[20] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handbook of Numerical Analysis, North-Holland, Amsterdam (2000), 715–1022. 10.1016/S1570-8659(00)07005-8Suche in Google Scholar

[21] R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, Handbook of numerical analysis. Vol. VII, North-Holland, Amsterdam (2000), 713–1020. 10.1016/S1570-8659(00)07005-8Suche in Google Scholar

[22] R. Eymard, T. Gallouët and R. Herbin, A cell-centered finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal. 26 (2006), no. 2, 326–353. 10.1093/imanum/dri036Suche in Google Scholar

[23] R. Eymard, T. Gallouët and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: Convergence analysis, C. R. Math. Acad. Sci. Paris 344 (2007), no. 6, 403–406. 10.1016/j.crma.2007.01.024Suche in Google Scholar

[24] R. Eymard, T. Gallouët and R. Herbin, Discretization schemes for linear diffusion operators on general non-conforming meshes, Finite Volumes for Complex Applications V, ISTE, London (2008), 375–382. Suche in Google Scholar

[25] R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal. 30 (2010), no. 4, 1009–1043. 10.1093/imanum/drn084Suche in Google Scholar

[26] R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math. 92 (2002), no. 1, 41–82. 10.1007/s002110100342Suche in Google Scholar

[27] R. Eymard, D. Hilhorst and M. Vohralík, A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems, Numer. Math. 105 (2006), no. 1, 73–131. 10.1007/978-3-642-18775-9_26Suche in Google Scholar

[28] R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, Finite Volumes for Complex Applications V, ISTE, London (2008), 659–692. Suche in Google Scholar

[29] F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 16–18, 1939–1959. 10.1016/S0045-7825(02)00644-8Suche in Google Scholar

[30] F. Hermeline, Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 21–24, 2497–2526. 10.1016/j.cma.2007.01.005Suche in Google Scholar

[31] F. Hermeline, A finite volume method for approximating 3D diffusion operators on general meshes, J. Comput. Phys. 228 (2009), no. 16, 5763–5786. 10.1016/j.jcp.2009.05.002Suche in Google Scholar

[32] T. Ikeda, Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, North-Holland, Amsterdam, 1983. Suche in Google Scholar

[33] R. D. Lazarov and P. S. Vassilevski, Numerical methods for convection-diffusion problems on general grids, Proceedings of an International Conference on “Approximation Theory”, DARBA, Sofia (2002), 258–283. Suche in Google Scholar

[34] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University, Cambridge, 2002. 10.1017/CBO9780511791253Suche in Google Scholar

[35] I. D. Mishev, Nonconforming finite volume methods, Comput. Geosci. 6 (2002), 253–268. 10.1023/A:1021214424953Suche in Google Scholar

[36] I. M. Nguena and A. Njifenjou, Some MPFA methods of DDFV type, Finite Volumes for Complex Applications V, ISTE, London (2008), 891–904. Suche in Google Scholar

[37] A. Njifenjou and A. J. Kinfack, Convergence analysis of an MPFA method for flow problems in anisotropic heterogeneous porous media, Int. J. Finite Vol. 5 (2008), no. 1, 17–56. Suche in Google Scholar

[38] A. Njifenjou, M. Mbehou and I. Moukouop Nguena, Analysis on general meshes of a DDFV type method for subsurface flow problems, preprint. Suche in Google Scholar

[39] A. Njifenjou and I. Moukouop-Nguena, Traitement des anisotropies de perméabilité en simulation d’écoulement en milieu poreux par les volumes finis, Proceedings of an International Conference on “Systemes Informatiques pour la Gestion de l’Environnement”, Douala (2001), 245–259. Suche in Google Scholar

[40] A. Njifenjou and I. M. Nguena, A finite volume approximation for second order elliptic problems with a full matrix on quadrilateral grids: Derivation of the scheme and a theoretical analysis, Int. J. Finite Vol. 3 (2006), no. 2, 64–93. Suche in Google Scholar

[41] P. Omnes, Error estimates for a finite volume method for the Laplace equation in dimension one through discrete Green functions, Int. J. Finite Vol. 6 (2009), no. 1, 24–41. Suche in Google Scholar

[42] P. Omnes, On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay–Voronoi meshes, ESAIM Math. Model. Numer. Anal. 45 (2011), no. 4, 627–650. 10.1051/m2an/2010068Suche in Google Scholar

[43] J. E. Roberts and J.-M. Thomas, Mixed and hybrid methods, Handbook of Numerical Analysis, North-Holland, Amsterdam (1991), 523–639. 10.1016/S1570-8659(05)80041-9Suche in Google Scholar

[44] T. F. Russell, M. F. Wheeler and I. Yotov, Superconvergence for control-volume mixed finite element methods on rectangular grids, SIAM J. Numer. Anal. 45 (2007), no. 1, 223–235. 10.1137/050646330Suche in Google Scholar

[45] S. Verdière and M. H. Vignal, Numerical and theoretical study of a dual mesh method using finite volume schemes for two phase flow problems in porous media, Numer. Math. 80 (1998), no. 4, 601–639. 10.1007/s002110050380Suche in Google Scholar

[46] NF-PRO: Understanding physical and numerical modelling of the key processes in the near field, and their coupling, for different host rocks and repository strategies, contract FI6W-CT-2003-02389 (2004). Suche in Google Scholar

Received: 2018-03-22
Accepted: 2021-04-25
Published Online: 2021-07-23
Published in Print: 2021-08-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/anly-2018-0019/html?lang=de
Button zum nach oben scrollen