Abstract
Weighted mixed spherical means are constructed by using a generalized shift (in a Euclidian space a generalized shift acts with respect to one variable and a usual shift acts with respect to other variables). We obtain the differential equation for weighted mixed spherical mean and prove theorems on weighted mixed spherical means applied to the solution of the B-ultrahyperbolic equation.
Keywords: Weighted mixed spherical mean; B-ultrahyperbolic equation; Bessel operator; generalized shift
Received: 2015-1-28
Accepted: 2015-6-10
Published Online: 2015-9-4
Published in Print: 2016-5-1
© 2016 by De Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Frontmatter
- Weighted mixed spherical means and singular ultrahyperbolic equation
- Fractional approximation of solutions of evolution equations
- Forecasting of random sequences and Prony decomposition of finance data
- On Volterra functions and Ramanujan integrals
- An inverse problem for a multidimensional fractional diffusion equation
- Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications
Schlagwörter für diesen Artikel
Weighted mixed spherical mean;
B-ultrahyperbolic equation;
Bessel operator;
generalized shift
Artikel in diesem Heft
- Frontmatter
- Weighted mixed spherical means and singular ultrahyperbolic equation
- Fractional approximation of solutions of evolution equations
- Forecasting of random sequences and Prony decomposition of finance data
- On Volterra functions and Ramanujan integrals
- An inverse problem for a multidimensional fractional diffusion equation
- Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications