Startseite Restrictions of harmonic functions and Dirichlet eigenfunctions of the Hata set to the interval
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Restrictions of harmonic functions and Dirichlet eigenfunctions of the Hata set to the interval

  • Baltazar Espinoza und Ricardo A. Sáenz EMAIL logo
Veröffentlicht/Copyright: 11. August 2015
Analysis
Aus der Zeitschrift Analysis Band 36 Heft 3

Abstract

In this paper we study the harmonic functions and the Dirichlet eigenfunctions of the Hata set, and their restrictions to the interval [0,1], its main edge. We prove that these restrictions of the harmonic functions are singular, i.e. monotone and with zero derivatives almost everywhere, and provide numerical evidence that this is also the case for the Dirichlet eigenfunctions.

MSC 2010: 28A80; 31C05; 34L16

References

[1] Adams B., Smith S. A., Strichartz R. S. and Teplyaev A., The spectrum of the Laplacian on the pentagasket, Fractals in Graz 2001, Trends Math., Birkhäuser, Basel (2003), 1–24. 10.1007/978-3-0348-8014-5_1Suche in Google Scholar

[2] Constantin S., Strichartz R. S. and Wheeler M., Analysis of the Laplacian and spectral operators on the Vicsek set, Commun. Pure Appl. Anal. 10 (2011), no. 1, 1–44. 10.3934/cpaa.2011.10.1Suche in Google Scholar

[3] Dalrymple K., Strichartz R. S. and Vinson J. P., Fractal differential equations on the Sierpinski gasket, J. Fourier Anal. Appl. 5 (1999), 203–284. 10.1007/BF01261610Suche in Google Scholar

[4] de Amo E., Díaz Carrillo M. and Fernández Sánchez J., Harmonic analysis on the Sierpiński gasket and singular functions, Acta Math. Hungar. 143 (2014), no. 1, 58–74. 10.1007/s10474-013-0373-1Suche in Google Scholar

[5] Demir B., Dzhafarov V., Koçak Ş. and Üreyen M., Derivatives of the restrictions of harmonic functions on the Sierpinski gasket to segments, J. Math. Anal. Appl. 333 (2007), no. 2, 817–822. 10.1016/j.jmaa.2006.11.025Suche in Google Scholar

[6] Hata M., On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), no. 2, 381–414. 10.1007/BF03167083Suche in Google Scholar

[7] Hutchinson J. E., Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. 10.1512/iumj.1981.30.30055Suche in Google Scholar

[8] Kigami J., A harmonic calculus on the Sierpiński spaces, Japan J. Appl. Math. 6 (1989), no. 2, 259–290. 10.1007/BF03167882Suche in Google Scholar

[9] Kigami J., Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993), no. 2, 721–755. Suche in Google Scholar

[10] Kigami J., Effective resistances for harmonic structures on p.c.f. self-similar sets, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 2, 291–303. 10.1017/S0305004100072091Suche in Google Scholar

[11] Kigami J., Analysis on Fractals, Cambridge University Press, Cambridge, 2001. 10.1017/CBO9780511470943Suche in Google Scholar

[12] Sáenz R. A., Nontangential limits and Fatou-type theorems on post-critically finite self-similar sets, J. Fourier Anal. Appl. 18 (2012), no. 2, 240–265. 10.1007/s00041-011-9194-1Suche in Google Scholar

[13] Shima T., On eigenvalue problems for the random walks on the Sierpiński pre-gaskets, Japan J. Indust. Appl. Math. 8 (1991), no. 1, 127–141. 10.1007/BF03167188Suche in Google Scholar

[14] Strichartz R. S., Differential Equations on Fractals, Princeton University Press, Princeton, 2006. 10.1515/9780691186832Suche in Google Scholar

[15] Yamaguti M., Hata M. and Kigami J., Mathematics of Fractals, American Mathematical Society, Providence, 1997; translated from the 1993 Japanese original by Kiki Hudson. 10.1090/mmono/167Suche in Google Scholar

Received: 2014-7-5
Revised: 2015-3-7
Accepted: 2015-8-5
Published Online: 2015-8-11
Published in Print: 2016-8-1

© 2016 by De Gruyter

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/anly-2014-1275/html
Button zum nach oben scrollen