Home The partition of PG(2, q3) arising from an order 3 planar collineation
Article
Licensed
Unlicensed Requires Authentication

The partition of PG(2, q3) arising from an order 3 planar collineation

  • S. G. Barwick , Alice M. W. Hui EMAIL logo and Wen-Ai Jackson
Published/Copyright: July 19, 2025
Become an author with De Gruyter Brill

Abstract

Let ϕ be a collineation of order 3 acting on PG(2, q3) whose fixed points are exactly an 𝔽q-plane P2,q. Let T be a point whose orbit under ϕ is a triangle and let ST be the subgroup of PGL(3, q3) that fixes setwise the 𝔽q-plane P2,q and fixes setwise the line TϕTϕ2 The point orbits of ST form a partition of the points of PG(2, q3) and consist of: the singletons T,Tϕ,Tϕ2; scattered linear sets on the sides of the triangle TTϕTϕ2; and 𝔽q-planes. This article studies the structure of this partition, looking at maps that permute elements of the partition. The motivation in studying this partition lies in its application to the construction of the Figueroa projective planes, and the article concludes with a characterisation in this setting.

MSC 2010: 51E15; 51E20

Funding statement: A.M. W. Hui acknowledges the support of National Natural Science Foundation of China (Grant No. 12071041).

  1. Communicated by: J. Bamberg

References

[1] R. D. Baker, J. M. N. Brown, G. L. Ebert, J. C. Fisher, Projective bundles. Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 329–336. MR1317131 Zbl 0803.5100910.36045/bbms/1103408578Search in Google Scholar

[2] S. G. Barwick, A. M. W. Hui, W.-A. Jackson, A geometric description of the Figueroa plane. Des. Codes Cryptogr. 91 (2023), 1581–1593. MR4578154 Zbl 1520.5100210.1007/s10623-022-01158-5Search in Google Scholar

[3] S. G. Barwick, W.-A. Jackson, Exterior splashes and linear sets of rank 3. Discrete Math. 339 (2016), 1613–1623. MR3475577 Zbl 1338.5100710.1016/j.disc.2015.12.018Search in Google Scholar

[4] L. M. Batten, P. M. Johnson, The collineation groups of Figueroa planes. Canad. Math. Bull. 36 (1993), 390–397. MR1245311 Zbl 0803.5100210.4153/CMB-1993-053-0Search in Google Scholar

[5] U. Dempwolff, PSL(3, q) on projective planes of order q3 Geom. Dedicata 18 (1985), 101–112. MR787308 Zbl 0563.5100810.1007/BF00221208Search in Google Scholar

[6] T. Grundhöfer, A synthetic construction of the Figueroa planes. J. Geom. 26 (1986), 191–201. MR850165 Zbl 0595.5101010.1007/BF01227843Search in Google Scholar

[7] N. L. Johnson, Planes and processes. Discrete Math. 309 (2009), 430–461. MR2473092 Zbl 1169.5101210.1016/j.disc.2007.12.031Search in Google Scholar

[8] M. Lavrauw, G. Van de Voorde, On linear sets on a projective line. Des. Codes Cryptogr. 56 (2010), 89–104. MR2658923 Zbl 1204.5101310.1007/s10623-010-9393-9Search in Google Scholar

[9] G. Lunardon, G. Marino, O. Polverino, R. Trombetti, Maximum scattered linear sets of pseudoregulus type and the Segre variety Snn J. Algebraic Combin. 39 (2014), 807–831. MR3199027 Zbl 1295.5101110.1007/s10801-013-0468-3Search in Google Scholar

[10] G. Lunardon, O. Polverino, Translation ovoids of orthogonal polar spaces. Forum Math. 16 (2004), 663–669. MR2096680 Zbl 1072.5101010.1515/form.2004.029Search in Google Scholar

[11] J. M. Nowlin Brown, Some partitions in Figueroa planes. Note Mat. 29 (2009), 33–43. MR2942757 Zbl 1252.51005Search in Google Scholar

[12] F. A. Sherk, The geometry of GF(q3 Canad. J. Math. 38 (1986), 672–696. MR845672 Zbl 0589.5102210.4153/CJM-1986-035-2Search in Google Scholar

Received: 2024-07-04
Published Online: 2025-07-19
Published in Print: 2025-07-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2025-0016/html
Scroll to top button