Startseite Exploring the interplay of semistable vector bundles and their restrictions on reducible curves
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exploring the interplay of semistable vector bundles and their restrictions on reducible curves

  • B N Suhas , Praveen Kumar Roy EMAIL logo und Amit Kumar Singh
Veröffentlicht/Copyright: 15. Mai 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let C be a comb-like curve over ℂ and let E be a vector bundle of rank n on C. In this paper, we investigate the criteria for the semistability of the restriction of E onto the components of C when E is given to be semistable with respect to a polarization w. As an application, assuming that each irreducible component of C is general in its moduli space, we investigate the w-semistability of kernel bundles on such curves, extending the results (completely for rank two and partially for higher rank) known in the case of a reducible nodal curve with two smooth components, but here using different techniques.

MSC 2010: 14H60; 14D99

Funding statement: The first and the third author were partially supported by a grant from Infosys Foundation. The third author was supported by the National Board for Higher Mathematics (NBHM), Department of Atomic Energy, Government of India (0204/2/2022/R&D-II/1785).

Acknowledgements

We thank the referee for carefully reading the article and for all the suggestions which have improved the overall quality of the article.

  1. Communicated by: R. Cavalieri

References

[1] Suhas B. N., S. Mazumdar, A. K. Singh, On the stability of kernel bundles over chain-like curves. J. Geom. Phys. 164 (2021), Paper No. 104167, 12 pages. MR4226398 Zbl 1464.1403510.1016/j.geomphys.2021.104167Suche in Google Scholar

[2] A. Beauville, Vector bundles on curves and theta functions. In: Moduli spaces and arithmetic geometry, volume 45 of Adv. Stud. Pure Math., 145–156, Math. Soc. Japan, Tokyo 2006. MR2310248 Zbl 1115.1402510.2969/aspm/04510145Suche in Google Scholar

[3] U. N. Bhosle, L. Brambila-Paz, P. E. Newstead, On linear series and a conjecture of D. C. Butler. Internat. J. Math. 26 (2015), Article ID 1550007, 18 pages. MR3319666 Zbl 1317.1407310.1142/S0129167X1550007XSuche in Google Scholar

[4] L. Brambila-Paz, O. Mata-Gutiérrez, P. E. Newstead, A. Ortega, Generated coherent systems and a conjecture of D. C. Butler. Internat. J. Math. 30 (2019), Article ID 1950024, 25 pages. MR3961440 Zbl 1419.1404910.1142/S0129167X19500241Suche in Google Scholar

[5] S. Brivio, F. F. Favale, On kernel bundles over reducible curves with a node. Internat. J. Math. 31 (2020), Article ID 2050054, 15 pages. MR4123943 Zbl 1458.1404710.1142/S0129167X20500548Suche in Google Scholar

[6] S. Brivio, F. F. Favale, Higher-rank Brill–Noether loci on nodal reducible curves. Geom. Dedicata 217 (2023), Paper No. 35, 23 pages. MR4544249 Zbl 1514.1403710.1007/s10711-023-00767-1Suche in Google Scholar

[7] D. C. Butler, Normal generation of vector bundles over a curve. J. Differential Geom. 39 (1994), 1–34. MR1258911 Zbl 0808.1402410.4310/jdg/1214454673Suche in Google Scholar

[8] D. C. Butler, Birational maps of moduli of Brill–Noether pairs. Preprint 1997, arXiv 9705009Suche in Google Scholar

[9] L. Ein, R. Lazarsfeld, Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves. In: Complex projective geometry Trieste, 1989/Bergen, 1989), volume 179 of London Math. Soc. Lecture Note Ser., 149–156, Cambridge Univ. Press 1992. MR1201380 Zbl 0768.1401210.1017/CBO9780511662652.011Suche in Google Scholar

[10] D. S. Nagaraj, C. S. Seshadri, Degenerations of the moduli spaces of vector bundles on curves. I. Proc. Indian Acad. Sci. Math. Sci. 107 (1997), 101–137. MR1455315 Zbl 0922.1402310.1007/BF02837721Suche in Google Scholar

[11] K. Paranjape, S. Ramanan, On the canonical ring of a curve. In: Algebraic geometry and commutative algebra, Vol. II, 503–516, Kinokuniya, Tokyo 1988. MR977775 Zbl 0699.1404110.1016/B978-0-12-348032-3.50008-6Suche in Google Scholar

[12] C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, volume 96 of Astérisque. Société Mathématique de France, Paris 1982. MR699278 Zbl 0517.14008Suche in Google Scholar

[13] J. C. Sierra, A degree bound for globally generated vector bundles. Math. Z. 262 (2009), 517–525. MR2506304 Zbl 1165.1401810.1007/s00209-008-0385-7Suche in Google Scholar

[14] M. Teixidor i Bigas, Moduli spaces of (semi)stable vector bundles on tree-like curves. Math. Ann. 290 (1991), 341–348. MR1109638 Zbl 0719.1401510.1007/BF01459249Suche in Google Scholar

Received: 2024-06-30
Revised: 2025-01-13
Published Online: 2025-05-15
Published in Print: 2025-04-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2025-0009/html
Button zum nach oben scrollen