Abstract
We show that the base polytope PM of any paving matroid M can be systematically obtained from a hypersimplex by slicing off certain subpolytopes, namely base polytopes of lattice path matroids corresponding to panhandle-shaped Ferrers diagrams. We calculate the Ehrhart polynomials of these matroids and consequently write down the Ehrhart polynomial of PM, starting with Katzman’s formula for the Ehrhart polynomial of a hypersimplex. The method builds on and generalizes Ferroni’s work on sparse paving matroids. Combinatorially, our construction corresponds to constructing a uniform matroid from a paving matroid by iterating the operation of stressed-hyperplane relaxation introduced by Ferroni, Nasr and Vecchi, which generalizes the standard matroid-theoretic notion of circuit-hyperplane relaxation. We present evidence that panhandle matroids are Ehrhart positive and describe a conjectured combinatorial formula involving chain forests and Eulerian numbers from which Ehrhart positivity of panhandle matroids will follow. As an application of the main result, we calculate the Ehrhart polynomials of matroids associated with Steiner systems and finite projective planes, and show that they depend only on their design-theoretic parameters: for example, while projective planes of the same order need not have isomorphic matroids, their base polytopes must be Ehrhart equivalent.
Funding statement: Martin is partially supported by Simons Collaboration Grant #315347. McGinnis is partially supported by the National Science Foundation under grant DMS-1839918 (RTG). Miyata is partially supported by the National Science Foundation under grants DMS-1954050, DMS-2039316 (RTG), and DMS-2053243 (FRG). Nasr was partially supported by the National Science Foundation under grant DMS-2053243 (FRG). Vindas-Meléndez is partially supported by the National Science Foundation under Award DMS-2102921. Yin is partially supported by the University of Denver’s Faculty Research Fund 84688-145601.
Acknowledgement
The authors thank Mohsen Aliabadi, Margaret Bayer, Matthias Beck, Federico Castillo, Luis Ferroni, Joseph Kung, and James Oxley for fruitful correspondence. This work was initiated at the 2021 Graduate Research Workshop in Combinatorics.
References
[1] M. Aguiar, F. Ardila, Hopf monoids and generalized permutahedra. Preprint 2017, arXiv:1709.07504Search in Google Scholar
[2] F. Ardila, C. Benedetti, J. Doker, Matroid polytopes and their volumes. Discrete Comput. Geom. 43 (2010), 841–854. MR2610473 Zbl 1204.5201610.1007/s00454-009-9232-9Search in Google Scholar
[3] A. U. Ashraf, An alternate approach to volumes of matroid polytopes. Preprint 2018, arXIV:1812.09373Search in Google Scholar
[4] M. Beck, S. Robins, Computing the continuous discretely. Springer 2015. MR3410115 Zbl 1339.5200210.1007/978-1-4939-2969-6Search in Google Scholar
[5] H. Bidkhori, Lattice path matroid polytopes. Preprint 2012, arXiv:1212.5705v1Search in Google Scholar
[6] J. Bonin, A. de Mier, M. Noy, Lattice path matroids: enumerative aspects and Tutte polynomials. J. Combin. Theory Ser. A 104 (2003), 63–94. MR2018421 Zbl 1031.0503110.1016/S0097-3165(03)00122-5Search in Google Scholar
[7] P. J. Cameron, Finite geometries. In: Handbook of combinatorics, Vol. 1, 647–691, Elsevier, Amsterdam 1995. MR1373669 Zbl 0854.51003Search in Google Scholar
[8] F. Castillo, F. Liu, Berline-Vergne valuation and generalized permutohedra. Discrete Comput. Geom. 60 (2018), 885–908. MR3869454 Zbl 1401.5202410.1007/s00454-017-9950-3Search in Google Scholar
[9] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, A. Schrijver, Combinatorial optimization. Wiley-Interscience 1998. MR1490579 Zbl 0909.9022710.1002/9781118033142Search in Google Scholar
[10] J. A. De Loera, D. C. Haws, M. Köppe, Ehrhart polynomials of matroid polytopes and polymatroids. Discrete Comput. Geom. 42 (2009), 670–702. MR2556462 Zbl 1207.5201510.1007/s00454-008-9080-zSearch in Google Scholar
[11] J. Edmonds, Submodular functions, matroids, and certain polyhedra. In: Combinatorial optimization—Eureka, you shrink!, volume 2570 of Lecture Notes in Comput. Sci., 11–26, Springer 2003. MR2163945 Zbl 1024.9005410.1007/3-540-36478-1_2Search in Google Scholar
[12] E. Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions. C. R. Acad. Sci. Paris 254 (1962), 616–618. MR130860 Zbl 0100.27601Search in Google Scholar
[13] N. J. Fan, Y. Li, On the Ehrhart polynomial of Schubert matroids. To appear in Discrete Comput. Geom. (2023).10.1007/s00454-023-00495-zSearch in Google Scholar
[14] E. M. Feichtner, B. Sturmfels, Matroid polytopes, nested sets and Bergman fans. Port. Math. (N.S.) 62 (2005), 437–468. MR2191630 Zbl 1092.52006Search in Google Scholar
[15] L. Ferroni, Hypersimplices are Ehrhart positive. J. Combin. Theory Ser. A 178 (2021), Paper No. 105365, 13 pages. MR4179055 Zbl 1459.5201010.1016/j.jcta.2020.105365Search in Google Scholar
[16] L. Ferroni, Matroids are not Ehrhart positive. Adv. Math. 402 (2022), Paper No. 108337, 27 pages. MR4396506 Zbl 1487.5202210.1016/j.aim.2022.108337Search in Google Scholar
[17] L. Ferroni, On the Ehrhart polynomial of minimal matroids. Discrete Comput. Geom. 68 (2022), 255–273. MR4430288 Zbl 1490.0502610.1007/s00454-021-00313-4Search in Google Scholar
[18] L. Ferroni, K. Jochemko, B. Schröter, Ehrhart polynomials of rank two matroids. Adv. in Appl. Math. 141 (2022), Paper No. 102410, 26 pages. MR4461609 Zbl 1496.5201610.1016/j.aam.2022.102410Search in Google Scholar
[19] L. Ferroni, D. McGinnis, Lattice points in slices of prisms. Preprint 2022, arXiv:2202.11808Search in Google Scholar
[20] L. Ferroni, G. Nasr, L. Vecchi, Stressed hyperplanes and Kazhdan–Lusztig gamma-positivity for matroids. To appear in Int. Math. Res. Not. 2023, 60 pages.10.1093/imrn/rnac270Search in Google Scholar
[21] L. Ferroni, B. Schröter, Valuative invariants for large classes of matroids. Preprint 2022, arXiv:2208.04893Search in Google Scholar
[22] S. Fujishige, Submodular functions and optimization, volume 58 of Annals of Discrete Mathematics. Elsevier, Amsterdam 2005. MR2171629 Zbl 1119.90044Search in Google Scholar
[23] I. M. Gel’cprime fand, R. M. Goresky, R. D. MacPherson, V. V. Serganova, Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. in Math. 63 (1987), 301–316. MR877789 Zbl 0622.5701410.1016/0001-8708(87)90059-4Search in Google Scholar
[24] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. Addison-Wesley, Reading, MA 1994. MR1397498 Zbl 0836.00001Search in Google Scholar
[25] B. Grünbaum, Convex polytopes. Springer 2003. MR1976856 Zbl 1033.5200110.1007/978-1-4613-0019-9Search in Google Scholar
[26] S. Herrmann, M. Joswig, Splitting polytopes. Münster J. Math. 1 (2008), 109–141. MR2502496 Zbl 1159.52016Search in Google Scholar
[27] M. Joswig, B. Schröter, Matroids from hypersimplex splits. J. Combin. Theory Ser. A 151 (2017), 254–284. MR3663497 Zbl 1366.0502410.1016/j.jcta.2017.05.001Search in Google Scholar
[28] M. Katzman, The Hilbert series of algebras of the Veronese type. Comm. Algebra 33 (2005), 1141–1146. MR2136691 Zbl 1107.1300310.1081/AGB-200053828Search in Google Scholar
[29] S. Kim, Flag enumerations of matroid base polytopes. J. Combin. Theory Ser. A 117 (2010), 928–942. MR2652103 Zbl 1228.0511210.1016/j.jcta.2010.02.002Search in Google Scholar
[30] K. Knauer, L. Martínez-Sandoval, J. L. Ramírez Alfonsín, On lattice path matroid polytopes: integer points and Ehrhart polynomial. Discrete Comput. Geom. 60 (2018), 698–719. MR3849147 Zbl 1494.5201410.1007/s00454-018-9965-4Search in Google Scholar
[31] A. Knutson, T. Lam, D. E. Speyer, Positroid varieties: juggling and geometry. Compos. Math. 149 (2013), 1710–1752. MR3123307 Zbl 1330.1408610.1112/S0010437X13007240Search in Google Scholar
[32] F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes. II. North-Holland 1977. MR0465510 Zbl 0369.94008Search in Google Scholar
[33] D. Mayhew, M. Newman, D. Welsh, G. Whittle, On the asymptotic proportion of connected matroids. European J. Combin. 32 (2011), 882–890. MR2821559 Zbl 1244.0504710.1016/j.ejc.2011.01.016Search in Google Scholar
[34] S. Oh, Positroids and Schubert matroids. J. Combin. Theory Ser. A 118 (2011), 2426–2435. MR2834184 Zbl 1231.0506110.1016/j.jcta.2011.06.006Search in Google Scholar
[35] J. Oxley, Matroid theory. Oxford Univ. Press 2011. MR2849819 Zbl 1254.0500210.1093/acprof:oso/9780198566946.001.0001Search in Google Scholar
[36] R. Pendavingh, J. van der Pol, On the number of matroids compared to the number of sparse paving matroids. Electron. J. Combin. 22 (2015), Paper 2.51, 17 pages. MR3367294 Zbl 1327.0505610.37236/4899Search in Google Scholar
[37] A. Postnikov, Permutohedra, associahedra, and beyond. Int. Math. Res. Not. 2009, issue 6, 1026–1106. MR2487491 Zbl 1162.5200710.1093/imrn/rnn153Search in Google Scholar
[38] A. Postnikov, V. Reiner, L. Williams, Faces of generalized permutohedra. Doc. Math. 13 (2008), 207–273. MR2520477 Zbl 1167.0500510.4171/dm/248Search in Google Scholar
[39] N. Sloane, The On-Line Encyclopedia of Integer Sequences. http://oeis.orgSearch in Google Scholar
[40] R. P. Stanley, Enumerative combinatorics. Volume 1. Cambridge Univ. Press 2012. MR2868112 Zbl 1247.05003Search in Google Scholar
[41] W. A. Stein, et al., Sage Mathematics Software (Version 9.3), 2021. www.sagemath.orgSearch in Google Scholar
[42] D. J. A. Welsh, Matroid theory. Academic Press 1976. MR0427112 Zbl 0343.05002Search in Google Scholar
[43] G. M. Ziegler, Lectures on polytopes. Springer 1995. MR1311028 Zbl 0823.5200210.1007/978-1-4613-8431-1Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Exploring tropical differential equations
- On the bond polytope
- Universal convex covering problems under translations and discrete rotations
- Ehrhart theory of paving and panhandle matroids
- A partial compactification of the Bridgeland stability manifold
- The geometry of discrete L-algebras
- Projective self-dual polygons in higher dimensions
Articles in the same Issue
- Frontmatter
- Exploring tropical differential equations
- On the bond polytope
- Universal convex covering problems under translations and discrete rotations
- Ehrhart theory of paving and panhandle matroids
- A partial compactification of the Bridgeland stability manifold
- The geometry of discrete L-algebras
- Projective self-dual polygons in higher dimensions