Home Mathematics On the bond polytope
Article
Licensed
Unlicensed Requires Authentication

On the bond polytope

  • Markus Chimani , Martina Juhnke-Kubitzke EMAIL logo and Alexander Nover
Published/Copyright: October 17, 2023
Become an author with De Gruyter Brill

Abstract

While the maximum cut problem and its corresponding polytope has received a lot of attention inliterature, comparably little is known about the natural closely related variant maximum bond. Here, given a graph G = (V, E), we ask for a maximum cut δ(S) ⊆ E with S ⊆ V under the restriction that both G[S] as well as G[V \ S] are connected. Observe that both the maximum cut and the maximum bond can be seen as inverse problems to the traditional minimum cut, as there, the connectivity arises naturally in optimal solutions.

The bond polytope is the convex hull of all incidence vectors of bonds. Similar to the connection of the corresponding optimization problems, the bond polytope is closely related to the cut polytope. While the latter has been intensively studied, there are no results on bond polytopes. We start a structural study of the latter, which additionally allows us to deduce algorithmic consequences.

We investigate the relation between cut- and bond polytopes and the additional intricacies that arise when requiring connectivity in the solutions. We study the effect of graph modifications on bond polytopes and their facets, akin to what has been spearheaded for cut polytopes by Barahona, Grötschel and Mahjoub [4; 3] and Deza and Laurant [17; 15; 16]. Moreover, we study facet-defining inequalities arising from edges and cycles for bond polytopes. In particular, these yield a complete linear description of bond polytopes of cycles and 3-connected planar (K5e)-minor free graphs. Finally, we present a reduction of the maximum bond problem on arbitrary graphs to the maximum bond problem on 3-connected graphs. This yields a linear time algorithm for maximum bond on (K5e)-minor free graphs.

MSC 2010: 05C70
  1. Communicated by:F. Santos

References

[1] B. Assarf, E. Gawrilow, K. Herr, M. Joswig, B. Lorenz, A. Paffenholz, T. Rehn, Computing convex hulls and counting integer points with polymake. Math. Program. Comput.9 (2017), 1–38. MR3613012 Zbl 1370.9000910.1007/s12532-016-0104-zSearch in Google Scholar

[2] F. Barahona, The max-cut problem on graphs not contractible to K5. Oper. Res. Lett.2 (1983), 107–111. MR717742 Zbl 0525.9009410.1016/0167-6377(83)90016-0Search in Google Scholar

[3] F. Barahona, M. Grötschel, A. R. Mahjoub, Facets of the bipartite subgraph polytope. Math. Oper. Res.10 (1985), 340–358. MR793888 Zbl 0578.0505610.1287/moor.10.2.340Search in Google Scholar

[4] F. Barahona, A. R. Mahjoub, On the cut polytope. Math. Programming36 (1986), 157–173. MR866986 Zbl 0616.9005810.1007/BF02592023Search in Google Scholar

[5] W. Bruns, J. Gubeladze, Polytopes, rings, and K-theory. Springer 2009. MR2508056 Zbl 1168.1300110.1007/b105283Search in Google Scholar

[6] W. Bruns, B. Ichim, T. Römer, R. Sieg, C. Söger, Normaliz. Algorithms for rational cones and affine monoids. Open source tool 2023, see https://normaliz.uos.deSearch in Google Scholar

[7] R. Carvajal, M. Constantino, M. Goycoolea, J. P. Vielma, A. Weintraub, Imposing connectivity constraints in forest planning models. Oper. Res.61 (2013), 824–836. MR3105730 Zbl 1291.9034110.1287/opre.2013.1183Search in Google Scholar

[8] B. Chaourar, A linear time algorithm for a variant of the MAX CUT problem in series parallel graphs. Adv. Oper. Res. no. 4 (2017), Art. ID 1267108. MR3740131 Zbl 1387.9025910.1155/2017/1267108Search in Google Scholar

[9] B. Chaourar, Connected max cut is polynomial for graphs without the excluded minor K5\e.J. Comb. Optim.40 (2020), 869–875. MR4167726 Zbl 1467.9004910.1007/s10878-020-00637-6Search in Google Scholar

[10] M. Chimani, P. Hliněný, A tighter insertion-based approximation of the crossing number. J. Comb. Optim.33 (2017), 1183–1225. MR3627511 Zbl 1369.0504210.1007/s10878-016-0030-zSearch in Google Scholar

[11] M. Chimani, M. Juhnke-Kubitzke, A. Nover, T. Römer, CUT polytopes of minor-free graphs. Preprint 2019, arXiv:1903.01817Search in Google Scholar

[12] M. Deza, M. Dutour Sikirić, Enumeration of the facets of cut polytopes over some highly symmetric graphs. Int. Trans. Oper. Res.23 (2016), 853–860. MR3508431 Zbl 1348.9053710.1111/itor.12194Search in Google Scholar

[13] M. Deza, M. Dutour Sikirić, Generalized cut and metric polytopes of graphs and simplicial complexes. Optim. Lett.14 (2020), 273–289. MR4064446 Zbl 1442.0525310.1007/s11590-018-1358-3Search in Google Scholar

[14] M. Deza, V. P. Grishukhin, M. Laurent, The symmetries of the cut polytope and of some relatives. In: Applied geometry and discrete mathematics, volume 4 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 205–220, Amer. Math. Soc. 1991. MR1116350 Zbl 0748.0506110.1090/dimacs/004/16Search in Google Scholar

[15] M. Deza, M. Laurent, Facets for the cut cone. I. Math. Programming56 (1992), 121–160. MR1183645 Zbl 0768.9007410.1007/BF01580897Search in Google Scholar

[16] M. Deza, M. Laurent, Facets for the cut cone. II. Clique-web inequalities. Math. Programming56 (1992), 161–188. MR1183646 Zbl 0768.9007510.1007/BF01580898Search in Google Scholar

[17] M. Deza, M. Laurent, Geometry of cuts and metrics, volume 15 of Algorithms and Combinatorics. Springer 2010. MR2841334 Zbl 1210.52001Search in Google Scholar

[18] G. Di Battista, R. Tamassia, On-line planarity testing. SIAM J. Comput.25 (1996), 956–997. MR1408894 Zbl 0858.6806310.1137/S0097539794280736Search in Google Scholar

[19] R. Diestel, Graph theory. Springer 2018. MR3822066 Zbl 1375.05002Search in Google Scholar

[20] G. Ding, S. Dziobiak, H. Wu, Large Wk - or K3,t-minors in 3-connected graphs. J. Graph Theory82 (2016), 207–217. MR3494148 Zbl 1339.0537610.1002/jgt.21895Search in Google Scholar

[21] R. G. Downey, M. R. Fellows, Fundamentals of parameterized complexity. Springer 2013. MR3154461 Zbl 1358.6800610.1007/978-1-4471-5559-1Search in Google Scholar

[22] G. L. Duarte, H. Eto, T. Hanaka, Y. Kobayashi, Y. Kobayashi, D. Lokshtanov, L. L. C. Pedrosa, R. C. S. Schouery, U. S. Souza, Computing the largest bond and the maximum connected cut of a graph. Algorithmica83 (2021), 1421–1458. MR4242105 Zbl 0733502810.1007/s00453-020-00789-1Search in Google Scholar

[23] G. L. Duarte, D. Lokshtanov, L. L. C. Pedrosa, R. C. S. Schouery, U. S. Souza, Computing the largest bond of a graph. In: 14th International Symposium on Parameterized and Exact Computation, volume 148 of LIPIcs. Leibniz Int. Proc. Inform., Art. No. 12, 15 pages, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern 2019. MR4042059 Zbl 07650220Search in Google Scholar

[24] H. Eto, T. Hanaka, Y. Kobayashi, Y. Kobayashi, Parameterized algorithms for maximum cut with connectivity constraints. In: 14th International Symposium on Parameterized and Exact Computation, volume 148 of LIPIcs. Leibniz Int. Proc. Inform., Art. No. 13, 15 pages, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern 2019. MR4042060 Zbl 07650221Search in Google Scholar

[25] M. Flynn, The largest bond in 3-connected graphs. Honors Theses 695, University of Mississippi, 2017. https://egrove.olemiss.edu/hon_thesis/695/Search in Google Scholar

[26] L. R. Ford, Jr., D. R. Fulkerson, Maximal flow through a network. Canadian J. Math.8 (1956), 399–404. MR79251 Zbl 0073.4020310.4153/CJM-1956-045-5Search in Google Scholar

[27] R. Gandhi, M. T. Hajiaghayi, G. Kortsarz, M. Purohit, K. Sarpatwar, On maximum leaf trees and connections to connected maximum cut problems. Inform. Process. Lett.129 (2018), 31–34. MR3712901 Zbl 1420.6815810.1016/j.ipl.2017.06.002Search in Google Scholar

[28] V. Grimm, T. Kleinert, F. Liers, M. Schmidt, G. Zöttl, Optimal price zones of electricity markets: a mixed-integer multilevel model and global solution approaches. Optim. Methods Softw.34 (2019), 406–436. MR3909026 Zbl 1407.9007710.1080/10556788.2017.1401069Search in Google Scholar

[29] D. J. Haglin, S. M. Venkatesan, Approximation and intractability results for the maximum cut problem and its variants. IEEE Trans. Comput.40 (1991), 110–113. MR1093500 Zbl 1395.6813910.1109/12.67327Search in Google Scholar

[30] M. Hajiaghayi, G. Kortsarz, R. MacDavid, M. Purohit, K. Sarpatwar, Approximation algorithms for connected maximum cut and related problems. In: Algorithms—ESA 2015, volume 9294 of Lecture Notes in Comput. Sci., 693–704, Springer 2015. MR3446416 Zbl 1420.6823710.1007/978-3-662-48350-3_58Search in Google Scholar

[31] M. Hajiaghayi, G. Kortsarz, R. MacDavid, M. Purohit, K. Sarpatwar, Approximation algorithms for connected maximum cut and related problems. Theoret. Comput. Sci.814 (2020), 74–85. MR4074729 Zbl 1445.6816610.1016/j.tcs.2020.01.016Search in Google Scholar

[32] J. E. Hopcroft, R. E. Tarjan, Dividing a graph into triconnected components. SIAM J. Comput.2 (1973), 135–158. MR327391 Zbl 0281.0511110.1137/0202012Search in Google Scholar

[33] R. M. Karp, Reducibility among combinatorial problems. In: Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N. Y., 1972), 85–103, Plenum, New York 1972. MR0378476 Zbl 1467.6806510.1007/978-1-4684-2001-2_9Search in Google Scholar

[34] S. Poljak, D. Turzík, Max-cut in circulant graphs. In: Topological, algebraical and combinatorial structures. Frolík’s memorial volume, volume 108, 379–392, 1992. MR1189859 Zbl 0769.0505910.1016/0012-365X(92)90690-HSearch in Google Scholar

[35] N. Robertson, P. D. Seymour, Graph minors. XIII. The disjoint paths problem. J. Combin. Theory Ser. B63 (1995), 65–110. MR1309358 Zbl 0823.0503810.1006/jctb.1995.1006Search in Google Scholar

[36] S. S. Vicente, V. Kolmogorov, C. Rother, Graph cut based image segmentation with connectivity priors. Proc. of 2008 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 1–8.10.1109/CVPR.2008.4587440Search in Google Scholar

[37] W. T. Tutte, Connectivity in graphs. University of Toronto Press, Toronto, Ontario; Oxford University Press, London 1966. MR0210617 Zbl 0146.45603Search in Google Scholar

[38] K. Wagner, Bemerkungen zu Hadwigers Vermutung. Math. Ann.141 (1960), 433–451. MR121309 Zbl 0096.1790410.1007/BF01360256Search in Google Scholar

[39] G. M. Ziegler, Lectures on polytopes. Springer 1995. MR1311028 Zbl 0823.5200210.1007/978-1-4613-8431-1Search in Google Scholar

[40] G. M. Ziegler, Lectures on 0 /1-polytopes. In: Polytopes—combinatorics and computation (Oberwolfach, 1997), volume 29 of DMV Sem., 1–41, Birkhäuser, Basel 2000. MR1785291 Zbl 0966.5201210.1007/978-3-0348-8438-9_1Search in Google Scholar

Received: 2021-11-04
Revised: 2022-03-28
Published Online: 2023-10-17
Published in Print: 2023-10-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2023-0014/html
Scroll to top button