Home Mathematics Sixteen-dimensional compact translation planes with automorphism groups of dimension at least 35
Article
Licensed
Unlicensed Requires Authentication

Sixteen-dimensional compact translation planes with automorphism groups of dimension at least 35

  • Harald Löwe EMAIL logo
Published/Copyright: October 19, 2022
Become an author with De Gruyter Brill

Abstract

The present paper investigates 16-dimensional compact translation planes with automorphism groups of dimension d between 35 and 37; planes with groups of higher dimensions have been classified by Hähl. We obtain a complete classification for d = 37 (up to isomorphisms). It turns out that these planes have Lenz type V and are already described in a recent paper of Hähl and Meyer [10]. Moreover, we give a partial classification for d = 35 and d = 36. The latter case will be completely finished in a forthcoming paper [16] of the author, while the case where d = 35 is completed except for groups whose maximal compact subgroups are 9-dimensional.

MSC 2010: 51H10
  1. Communicated by: R. Löwen

References

[1] T. Buchanan, H. Hähl, On the kernel and the nuclei of 8-dimensional locally compact quasifields. Arch. Math. 29 (1977), 472–480. MR470007 Zbl 0365.17011Search in Google Scholar

[2] H. Hähl, Automorphismengruppen achtdimensionaler lokalkompakter Quasikörper. Math. Z. 149 (1976), 203–225. MR409714 Zbl 0316.20032Search in Google Scholar

[3] H. Hähl, Zur Klassifikation von 8- und 16-dimensionalen lokalkompakten Translationsebenen nach ihren Kollineationsgruppen. Math. Z. 159 (1978), 259–294. MR493734 Zbl 0381.51009Search in Google Scholar

[4] H. Hähl, SU4(ℂ) als Kollineationsgruppe in sechzehndimensionalen lokalkompakten Translationsebenen. Geom. Dedicata 23 (1987), 319–345. MR900284 Zbl 0622.51008Search in Google Scholar

[5] H. Hähl, Sechzehndimensionale lokalkompakte Translationsebenen mit Spin(7) als Kollineationsgruppe. Arch. Math. Basel) 48 (1987), 267–276. MR880087 Zbl 0639.51017Search in Google Scholar

[6] H. Hähl, Sechzehndimensionale lokalkompakte Translationsebenen, deren Kollineationsgruppe G2 enthält. Geom. Dedicata 36 (1990), 181–197. MR1076857 Zbl 0719.51011Search in Google Scholar

[7] H. Hähl, Sixteen-dimensional locally compact translation planes admitting SU4ℂ ⋅ SU2ℂ or SU4ℂ ⋅ SL2ℝ as a group of collineations. Abh. Math. Sem. Univ. Hamburg 70 (2000), 137–163. MR1809542 Zbl 0992.51007Search in Google Scholar

[8] H. Hähl, Sixteen-dimensional locally compact translation planes with large automorphism groups having no fixed points. Geom. Dedicata 83 (2000), 105–117. MR1800014 Zbl 0973.51011Search in Google Scholar

[9] H. Hähl, Sixteen-dimensional locally compact translation planes with collineation groups of dimension at least 38. Adv. Geom. 11 (2011), 371–380. MR2795431 Zbl 1218.51009Search in Google Scholar

[10] H. Hähl, E. Meyer, Sixteen-dimensional locally compact planes of Lenz-type V on which SU2ℍ acts as a group of collineations. J. Geom. 111 (2020), Paper No. 46, 19 pages. MR4174655 Zbl 1464.51011Search in Google Scholar

[11] J. Hilgert, H.-H. Neeb, Lie-Gruppen und Lie-Algebren. Vieweg, Braunschweig 1991. Zbl 0760.22005Search in Google Scholar

[12] H. Löwe, Noncompact, almost simple groups operating on locally compact, connected translation planes. J. Lie Theory 10 (2000), 127–146. MR1748085 Zbl 0951.51007Search in Google Scholar

[13] H. Löwe, Noncompact subgroups of the reduced stabilizer of a locally compact, connected translation plane. Forum Math. 15 (2003), 247–260. MR1956966 Zbl 1020.51013Search in Google Scholar

[14] H. Löwe, Sixteen-dimensional locally compact translation planes admitting SL2ℍ as a group of collineations. Pacific J. Math. 209 (2003), 325–337. MR1978375 Zbl 1063.51008Search in Google Scholar

[15] H. Löwe, Parabolic and unipotent collineation groups of locally compact connected translation planes. Innov. Incidence Geom. 2 (2005), 57–82. MR2214714 Zbl 1182.51004Search in Google Scholar

[16] H. Löwe, 8-dimensional extensions of the Rees algebras. In preparation.Search in Google Scholar

[17] H. Salzmann, Near-homogeneous 16-dimensional planes. Adv. Geom. 1 (2001), 145–155. MR1840218 Zbl 1002.51011Search in Google Scholar

[18] H. Salzmann, 16-dimensional compact projective planes with 3 fixed points. Adv. Geom. 2003, Special issue, S153–S157. MR2028394 Zbl 1043.51011Search in Google Scholar

[19] H. Salzmann, Compact planes, mostly 8-dimensional. A retrospect. Preprint 2014, arXiv:1402.0304 [math.GT]Search in Google Scholar

[20] H. Salzmann, Compact 16-dimensional planes. An update. Preprint 2017, arXiv:1706.03696v1 [math.GT]Search in Google Scholar

[21] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, M. Stroppel, Compact projective planes. De Gruyter 1995. MR1384300 Zbl 0851.51003Search in Google Scholar

Received: 2022-07-03
Published Online: 2022-10-19
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2022-0022/html
Scroll to top button