Home A new axiomatics for masures II
Article
Licensed
Unlicensed Requires Authentication

A new axiomatics for masures II

  • Auguste Hébert EMAIL logo
Published/Copyright: October 19, 2022
Become an author with De Gruyter Brill

Abstract

Masures are generalizations of Bruhat–Tits buildings. They were introduced by Gaussent and Rousseau in order to study Kac–Moody groups over valued fields. We prove that the intersection of two apartments of a masure is convex. Using this, we simplify the axiomatic definition of masures given by Rousseau.

MSC 2010: 20E42

Funding statement: The author was supported by the ANR grant ANR-15-CE40-0012.

Acknowledgements

I would like to thank the referee for his/ her valuable comments and suggestions.

  1. Communicated by: R. Weiss

References

[1] N. Bardy-Panse, S. Gaussent, G. Rousseau, Iwahori–Hecke algebras for Kac–Moody groups over local fields. Pacific J. Math. 285 (2016), 1–61. MR3554242 Zbl 1347.17011Search in Google Scholar

[2] A. Braverman, D. Kazhdan, The spherical Hecke algebra for affine Kac–Moody groups I. Ann. of Math. (2) 174 (2011), 1603–1642. MR2846488 Zbl 1235.22027Search in Google Scholar

[3] A. Braverman, D. Kazhdan, M. M. Patnaik, Iwahori-Hecke algebras for p-adic loop groups. Invent. Math. 204 (2016), 347–442. MR3489701 Zbl 1345.22011Search in Google Scholar

[4] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. no. 41 (1972), 5–251. MR327923 Zbl 0254.14017Search in Google Scholar

[5] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée. Inst. Hautes Études Sci. Publ. Math. no. 60 (1984), 197–376. MR756316 Zbl 0597.14041Search in Google Scholar

[6] C. Charignon, Immeubles affines et groupes de Kac–Moody. PhD thesis, Université Henri Poincaré Nancy 1, 2010.Search in Google Scholar

[7] S. Gaussent, G. Rousseau, Kac-Moody groups, hovels and Littelmann paths. Ann. Inst. Fourier Grenoble) 58 (2008), 2605–2657. MR2498360 Zbl 1161.22007Search in Google Scholar

[8] S. Gaussent, G. Rousseau, Spherical Hecke algebras for Kac–Moody groups over local fields. Ann. of Math. (2) 180 (2014), 1051–1087. MR3245012 Zbl 1315.20046Search in Google Scholar

[9] A. Hébert, Study of masures and of their applications in arithmetic. PhD thesis, Université de Lyon, 2018 https://hal.archives-ouvertes.fr/tel-01856620v1Search in Google Scholar

[10] A. Hébert, A new axiomatics for masures. Canad. J. Math. 72 (2020), 732–773. MR4098599 Zbl 07201246Search in Google Scholar

[11] A. Hébert, Distances on a masure. Transform. Groups 26 (2021), 1331–1363. MR4372949 Zbl 07472652Search in Google Scholar

[12] B. Rémy, Groupes de Kac–Moody déployés et presque déployés. Astérisque no. 277 (2002), viii+348 pages. MR1909671 Zbl 1001.22018Search in Google Scholar

[13] G. Rousseau, Masures affines. Pure Appl. Math. Q. 7 (2011), 859–921. MR2848593 Zbl 1255.51009Search in Google Scholar

[14] G. Rousseau, Groupes de Kac–Moody déployés sur un corps local II. Masures ordonnées. Bull. Soc. Math. France 144 (2016), 613–692. MR3562609 Zbl 1401.20055Search in Google Scholar

[15] G. Rousseau, Almost split Kac-Moody groups over ultrametric fields. Groups Geom. Dyn. 11 (2017), 891–975. MR3692902 Zbl 1423.20058Search in Google Scholar

[16] J. Tits, Uniqueness and presentation of Kac-Moody groups over fields. J. Algebra 105 (1987), 542–573. MR873684 Zbl 0626.22013Search in Google Scholar

Received: 2021-06-30
Revised: 2021-08-25
Published Online: 2022-10-19
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2022-0013/html
Scroll to top button