Home Mathematics On the rigidity of harmonic-Ricci solitons
Article
Licensed
Unlicensed Requires Authentication

On the rigidity of harmonic-Ricci solitons

  • Andrea Anselli EMAIL logo
Published/Copyright: April 15, 2022
Become an author with De Gruyter Brill

Abstract

We introduce the notion of rigidity for harmonic-Ricci solitons and provide some characterizations of rigidity, generalizing known results for Ricci solitons. In the complete case we restrict to steady and shrinking gradient solitons, while in the compact case we treat general solitons without further assumptions. We show that the rigidity can be traced back to the vanishing of certain modified curvature tensors that take into account the geometry of a Riemannian manifold equipped with a smooth map φ, called φ-curvature, which is a natural generalization in the setting of harmonic-Ricci solitons of the standard curvature tensor.

MSC 2010: 53C25

Acknowledgements

The author wishes to thank the anonymous referee for his careful reading of the manuscript and for his corrections and suggestions, which helped him a lot improving quality and readability of the paper.

References

[1] A. Abolarinwa, Basic structural equations for almost Ricci-harmonic solitons and applications. Differ. Geom. Dyn. Syst. 21 (2019), 1–13. MR3997841 Zbl 1423.53055Search in Google Scholar

[2] L. J. Alías, P. Mastrolia, M. Rigoli, Maximum principles and geometric applications. Springer 2016. MR3445380 Zbl 1346.5800110.1007/978-3-319-24337-5Search in Google Scholar

[3] A. Anselli, Phi-curvatures, harmonic-Einstein manifolds and Einstein-type structures. PhD thesis, Universitá degli Studi di Milano, 2020.Search in Google Scholar

[4] A. Anselli, Bach and Einstein’s equations in presence of a field. Int. J. Geom. Methods. Mod. Phys. 18 (2021), no. 5, 215007. MR425475910.1142/S0219887821500778Search in Google Scholar

[5] A. Anselli, G. Colombo, M. Rigoli, On the geometry of Einstein-type structures. Nonlinear Anal. 204 (2021), 112198. MR4184679 Zbl 731096310.1016/j.na.2020.112198Search in Google Scholar

[6] C. Aquino, A. Barros, E. Ribeiro, Jr., Some applications of the Hodge–de Rham decomposition to Ricci solitons. Results Math. 60 (2011), 245–254. MR2836897 Zbl 1252.5305410.1007/s00025-011-0166-1Search in Google Scholar

[7] R. Bach, Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Z. 9 (1921), 110–135. MR1544454 JFM 48.1035.0110.1007/BF01378338Search in Google Scholar

[8] P. Baird, J. Eells, A conservation law for harmonic maps. In: Geometry Symposium, Utrecht 1980 (Utrecht, 1980), volume 894 of Lecture Notes in Math., 1–25, Springer 1981. MR655417 Zbl 0485.5800810.1007/BFb0096222Search in Google Scholar

[9] P. Baird, J. C. Wood, Harmonic morphisms between Riemannian manifolds, volume 29 of London Mathematical Society Monographs. New Series. Oxford Univ. Press 2003. MR2044031 Zbl 1055.5304910.1093/acprof:oso/9780198503620.001.0001Search in Google Scholar

[10] A. Barros, R. Batista, E. Ribeiro, Jr., Compact almost Ricci solitons with constant scalar curvature are gradient. Monatsh. Math. 174 (2014), 29–39. MR3190769 Zbl 1296.5309210.1007/s00605-013-0581-3Search in Google Scholar

[11] E. Batista, L. Adriano, W. Tokura, Gradient Einstein-type structures immersed into a Riemannian warped product. To appear in J. Geom. Phys., 104510.10.1016/j.geomphys.2022.104510Search in Google Scholar

[12] F. Brito, H. L. Liu, U. Simon, C. P. Wang, Hypersurfaces in space forms with some constant curvature functions. In: Geometry and topology of submanifolds, IX (Valenciennes/Lyon/Leuven, 1997), 48–63, World Scientific, Singapore 1999. MR1787369 Zbl 0926.0002810.1142/9789812817976_0006Search in Google Scholar

[13] H.-D. Cao, Recent progress on Ricci solitons. In: Recent advances in geometric analysis, volume 11 of Adv. Lect. Math., 1–38, Int. Press, Somerville, MA 2010. MR2648937 Zbl 1201.53046Search in Google Scholar

[14] H.-D. Cao, Q. Chen, On Bach-flat gradient shrinking Ricci solitons. Duke Math. J. 162 (2013), 1149–1169. MR3053567 Zbl 1277.5303610.1215/00127094-2147649Search in Google Scholar

[15] G. de Rham, Sur la reductibilité d’un espace de Riemann. Comment. Math. Helv. 26 (1952), 328–344. MR52177 Zbl 0048.1570110.1007/BF02564308Search in Google Scholar

[16] G. Di Matteo, Analysis of Type I Singularities in the Harmonic Ricci Flow. Preprint 2018, arXiv:1811.09563 [math.DG]Search in Google Scholar

[17] M. Eminenti, G. La Nave, C. Mantegazza, Ricci solitons: the equation point of view. Manuscripta Math. 127 (2008), 345–367. MR2448435 Zbl 1160.5303110.1007/s00229-008-0210-ySearch in Google Scholar

[18] M. Fernández-López, E. García-Río, Rigidity of shrinking Ricci solitons. Math. Z. 269 (2011), 461–466. MR2836079 Zbl 1226.5304710.1007/s00209-010-0745-ySearch in Google Scholar

[19] R. S. Hamilton, Three-manifolds with positive Ricci curvature. J. Differential Geometry17 (1982), 255–306. MR664497 Zbl 0504.5303410.4310/jdg/1214436922Search in Google Scholar

[20] D. D. Joyce, Riemannian holonomy groups and calibrated geometry. Oxford Univ. Press 2007. MR2292510 Zbl 1200.5300310.1093/oso/9780199215607.001.0001Search in Google Scholar

[21] B. List, Evolution of an extended Ricci flow system. Comm. Anal. Geom. 16 (2008), 1007–1048. MR2471366 Zbl 1166.5304410.4310/CAG.2008.v16.n5.a5Search in Google Scholar

[22] R. Müller, Ricci flow coupled with harmonic map flow. Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), 101–142. MR2961788 Zbl 1247.5308210.24033/asens.2161Search in Google Scholar

[23] O. Munteanu, N. Sesum, On gradient Ricci solitons. J. Geom. Anal. 23 (2013), 539–561. MR3023848 Zbl 1275.5306110.1007/s12220-011-9252-6Search in Google Scholar

[24] A. Naber, Some geometry and analysis on Ricci solitons. Preprint 2006, arXiv:math/0612532 [math.DG]Search in Google Scholar

[25] P. Petersen, W. Wylie, Rigidity of gradient Ricci solitons. Pacific J. Math. 241 (2009), 329–345. MR2507581 Zbl 1176.5304810.2140/pjm.2009.241.329Search in Google Scholar

[26] P. Shi, Singularities of Connection Ricci Flow and Ricci Harmonic Flow. Preprint 2013, arXiv:1309.5684 [math.DG]Search in Google Scholar

[27] Y. Tashiro, Complete Riemannian manifolds and some vector fields. Trans. Amer. Math. Soc. 117 (1965), 251–275. MR174022 Zbl 0136.1770110.1090/S0002-9947-1965-0174022-6Search in Google Scholar

[28] L. F. Wang, On Ricci-harmonic metrics. Ann. Acad. Sci. Fenn. Math. 41 (2016), 417–437. MR3467719 Zbl 1342.5305910.5186/aasfm.2016.4127Search in Google Scholar

[29] F. Yang, J. Shen, Volume growth for gradient shrinking solitons of Ricci-harmonic flow. Sci. China Math. 55 (2012), 1221–1228. MR2925588 Zbl 1270.5308710.1007/s11425-012-4361-7Search in Google Scholar

[30] F. Yang, L.-D. Zhang, On complete shrinking Ricci-harmonic solitons. J. of Math. 36 (2016), 494–500.Search in Google Scholar

[31] Z.-H. Zhang, On the completeness of gradient Ricci solitons. Proc. Amer. Math. Soc. 137 (2009), 2755–2759. MR2497489 Zbl 1176.5304610.1090/S0002-9939-09-09866-9Search in Google Scholar

Received: 2020-09-03
Revised: 2020-11-10
Published Online: 2022-04-15
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2022-0003/html
Scroll to top button