Home Farthest points on most Alexandrov surfaces
Article
Licensed
Unlicensed Requires Authentication

Farthest points on most Alexandrov surfaces

  • Joël Rouyer EMAIL logo and Costin Vîlcu
Published/Copyright: January 15, 2020
Become an author with De Gruyter Brill

Abstract

We study global maxima of distance functions on most Alexandrov surfaces with curvature bounded below, where most is used in the sense of Baire categories.

MSC 2010: 53C45


Acknowledgements

Both authors express thanks to Tudor Zamfirescu for suggesting to investigate properties of most Alexandrov surfaces.

  1. Communicated by: M. Henk

  2. Funding: The authors were partly supported by the grant PN-II-ID-PCE-2011-3-0533 of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI. The first author was also partly supported by the Centre Francophone en Mathématique de Bucarest.

References

[1] K. Adiprasito, T. Zamfirescu, Few Alexandrov surfaces are Riemann. J. Nonlinear Convex Anal. 16 (2015), 1147–1153. MR3365702 Zbl 1368.53047Search in Google Scholar

[2] A. D. Alexandrov, A. D. Alexandrov selected works. Part II. Chapman & Hall/CRC, Boca Raton, FL 2006. MR2193913 Zbl 1081.01024Search in Google Scholar

[3] Y. Burago, M. Gromov, G. Perelman, A. D. Aleksandrov spaces with curvatures bounded below (Russian). Uspekhi Mat. Nauk47 (1992), no. 2 (284), 3–51, 222. English translation in Russian Math. Surveys47 (1992), no. 2, 1–58. MR1185284 Zbl 0802.5301810.1070/RM1992v047n02ABEH000877Search in Google Scholar

[4] H. T. Croft, K. J. Falconer, R. K. Guy, Unsolved problems in geometry. Springer 1991. MR1107516 Zbl 0748.5200110.1007/978-1-4612-0963-8Search in Google Scholar

[5] K. Grove, P. Petersen, A radius sphere theorem. Invent. Math. 112 (1993), 577–583. MR1218324 Zbl 0801.5302910.1007/BF01232447Search in Google Scholar

[6] P. M. Gruber, Baire categories in convexity. In: Handbook of convex geometry, Vol. B, 1327–1346, North-Holland 1993. MR1243011 Zbl 0791.5200210.1016/B978-0-444-89597-4.50021-4Search in Google Scholar

[7] P. Horja, On the number of geodesic segments connecting two points on manifolds of non-positive curvature. Trans. Amer. Math. Soc. 349 (1997), 5021–5030. MR1401773 Zbl 0896.5303710.1090/S0002-9947-97-01847-3Search in Google Scholar

[8] J. Itoh, J. Rouyer, C. Vîlcu, Moderate smoothness of most Alexandrov surfaces. Internat. J. Math. 26 (2015), 1540004, 14 pages. MR3338068 Zbl 1325.5309310.1142/S0129167X15400042Search in Google Scholar

[9] V. Kapovitch, Perelman’s stability theorem. In: Surveys in differential geometry. Vol. XI, 103–136, Int. Press, Somerville, MA 2007. MR2408265 Zbl 1151.5303810.4310/SDG.2006.v11.n1.a5Search in Google Scholar

[10] Y. Otsu, T. Shioya, The Riemannian structure of Alexandrov spaces. J. Differential Geom. 39 (1994), 629–658. MR1274133 Zbl 0808.5306110.4310/jdg/1214455075Search in Google Scholar

[11] G. Perelman, A. D. Alexandrov spaces with curvatures bounded from below II. Preprint 1991.Search in Google Scholar

[12] A. V. Pogorelov, Extrinsic geometry of convex surfaces. Amer. Math. Soc. 1973. MR0346714 Zbl 0311.5306710.1090/mmono/035Search in Google Scholar

[13] J. Rouyer, On antipodes on a manifold endowed with a generic Riemannian metric. Pacific J. Math. 212 (2003), 187–200. MR2016977 Zbl 1060.5304410.2140/pjm.2003.212.187Search in Google Scholar

[14] J. Rouyer, Generic properties of compact metric spaces. Topology Appl. 158 (2011), 2140–2147. MR2831899 Zbl 1237.5402510.1016/j.topol.2011.07.003Search in Google Scholar

[15] J. Rouyer, C. Vîlcu, The connected components of the space of Alexandrov surfaces. In: Bridging algebra, geometry, and topology, volume 96 of Springer Proc. Math. Stat., 249–254, Springer 2014. MR3297119 Zbl 1338.5309510.1007/978-3-319-09186-0_15Search in Google Scholar

[16] J. Rouyer, C. Vîlcu, Simple closed geodesics on most Alexandrov surfaces. Adv. Math. 278 (2015), 103–120. MR3341786 Zbl 1317.5309410.1016/j.aim.2015.04.003Search in Google Scholar

[17] J. Rouyer, C. Vîlcu, Farthest points on flat surfaces. J. Geom. 109 (2018) 10pp. MR3860908 Zbl 1407.5307410.1007/s00022-018-0448-9Search in Google Scholar

[18] K. Shiohama, M. Tanaka, Cut loci and distance spheres on Alexandrov surfaces. In: Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), volume 1 of Sémin. Congr., 531–559, Soc. Math. France, Paris 1996. MR1427770 Zbl 0874.53032Search in Google Scholar

[19] C. Vîlcu, Properties of the farthest point mapping on convex surfaces. Rev. Roumaine Math. Pures Appl. 51 (2006), 125–134. MR2275325 Zbl 1120.52002Search in Google Scholar

[20] C. Vîlcu, Common maxima of distance functions on orientable Alexandrov surfaces. J. Math. Soc. Japan60 (2008), 51–64. MR2392002 Zbl 1154.5304510.2969/jmsj/06010051Search in Google Scholar

[21] C. Vîlcu, T. Zamfirescu, Symmetry and the farthest point mapping on convex surfaces. Adv. Geom. 6 (2006), 379–387. MR2248257 Zbl 1118.5200510.1515/ADVGEOM.2006.023Search in Google Scholar

[22] C. Vîlcu, T. Zamfirescu, Multiple farthest points on Alexandrov surfaces. Adv. Geom. 7 (2007), 83–100. MR2290641 Zbl 1124.5302910.1515/ADVGEOM.2007.006Search in Google Scholar

[23] T. Zamfirescu, On some questions about convex surfaces. Math. Nachr. 172 (1995), 313–324. MR1330637 Zbl 0833.5300410.1002/mana.19951720122Search in Google Scholar

[24] T. Zamfirescu, Points joined by three shortest paths on convex surfaces. Proc. Amer. Math. Soc. 123 (1995), 3513–3518. MR1273530 Zbl 0851.5200310.1090/S0002-9939-1995-1273530-9Search in Google Scholar

[25] T. Zamfirescu, Farthest points on convex surfaces. Math. Z. 226 (1997), 623–630. MR1484714 Zbl 0896.5200510.1007/PL00004360Search in Google Scholar

[26] T. Zamfirescu, Extreme points of the distance function on convex surfaces. Trans. Amer. Math. Soc. 350 (1998), 1395–1406. MR1458314 Zbl 0896.5200610.1090/S0002-9947-98-02106-0Search in Google Scholar

[27] T. Zamfirescu, On the cut locus in Alexandrov spaces and applications to convex surfaces. Pacific J. Math. 217 (2004), 375–386. MR2109940 Zbl 1068.5304810.2140/pjm.2004.217.375Search in Google Scholar

[28] T. Zamfirescu, On the number of shortest paths between points on manifolds. Rend. Circ. Mat. Palermo (2) Suppl. no. 77 (2006), 643–647. MR2245697 Zbl 1108.53035Search in Google Scholar

Received: 2017-12-08
Revised: 2018-03-11
Published Online: 2020-01-15
Published in Print: 2020-01-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2019-0010/html
Scroll to top button