Home Rational quartic symmetroids
Article
Licensed
Unlicensed Requires Authentication

Rational quartic symmetroids

  • Martin Helsø EMAIL logo
Published/Copyright: September 11, 2019
Become an author with De Gruyter Brill

Abstract

We classify rational, irreducible quartic symmetroids in projective 3-space. They are either singular along a line or a smooth conic section, or they have a triple point or a tacnode.

MSC 2010: 14M12; 14J26
  1. Communicated by: I. Coskun

Acknowledgements

I would like to thank Kristian Ranestad for many insightful discussions and for super\-vising the master’s thesis of which this paper is both an abridgement and an extension. I thank the anonymous referee for helpful comments.

References

[1] G. Blekherman, J. Hauenstein, J. C. Ottem, K. Ranestad, B. Sturmfels, Algebraic boundaries of Hilbert’s SOS cones. Compos. Math. 148 (2012), 1717–1735. MR2999301 Zbl 1273.1304310.1112/S0010437X12000437Search in Google Scholar

[2] P. Cayley, A Memoir on Quartic Surfaces. Proc. Lond. Math. Soc. 3 (1869/71), 19–69. MR1577187 JFM 03.0390.0110.1112/plms/s1-3.1.19Search in Google Scholar

[3] A. Degtyarev, I. Itenberg, On real determinantal quartics. In: Proceedings of the Gökova Geometry-Topology Conference 2010, 110–128, Int. Press, Somerville, MA 2011. MR2931883 Zbl 1248.14063Search in Google Scholar

[4] I. V. Dolgachev, Classical algebraic geometry. Cambridge Univ. Press 2012. MR2964027 Zbl 1252.1400110.1017/CBO9781139084437Search in Google Scholar

[5] J. Harris, Algebraic geometry. Springer 1992. MR1182558 Zbl 0779.1400110.1007/978-1-4757-2189-8Search in Google Scholar

[6] A. Iliev, G. Kapustka, M. Kapustka, K. Ranestad, Hyper-Kähler fourfolds and Kummer surfaces. Proc. Lond. Math. Soc. (3)115 (2017), 1276–1316. MR3741852 Zbl 0682729710.1112/plms.12063Search in Google Scholar

[7] C. M. Jessop, Quartic surfaces with singular points. University Press 1916. Zbl 1332.1400510.2307/3602789Search in Google Scholar

[8] N. Kasuya, On the links of simple singularities, simple elliptic singularities and cusp singularities. Demonstr. Math. 48 (2015), 289–312. MR3353560 Zbl 1322.3202110.1515/dema-2015-0021Search in Google Scholar

[9] H. B. Laufer, On minimally elliptic singularities. Amer. J. Math. 99 (1977), 1257–1295. MR0568898 Zbl 0384.3200310.2307/2374025Search in Google Scholar

[10] M. Noether, Ueber die rationalen Flächen vierter Ordnung. Math. Ann. 33 (1889), 546–571. MR1510560 JFM 21.0827.0210.1007/BF01444033Search in Google Scholar

[11] J. C. Ottem, K. Ranestad, B. Sturmfels, C. Vinzant, Quartic spectrahedra. Math. Program. 151 (2015), 585–612. MR3348164 Zbl 1328.1409110.1007/s10107-014-0844-3Search in Google Scholar

[12] K. Saito, Einfach-elliptische Singularitäten. Invent. Math. 23 (1974), 289–325. MR0354669 Zbl 0296.1401910.1007/BF01389749Search in Google Scholar

[13] T. Urabe, On quartic surfaces and sextic curves with certain singularities. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), 434–437. MR732604 Zbl 0549.1401310.3792/pjaa.59.434Search in Google Scholar

[14] T. Urabe, On singularities on degenerate del Pezzo surfaces of degree 1, 2. In: Singularities, Part 2 (Arcata, Calif., 1981), volume 40 of Proc. Sympos. Pure Math., 587–591, Amer. Math. Soc. 1983. MR713283 Zbl 0515.1402110.1090/pspum/040.2/713283Search in Google Scholar

[15] T. Urabe, On quartic surfaces and sextic curves with singularities of type 8, T2,3,7, E12. Publ. Res. Inst. Math. Sci. 20 (1984), 1185–1245. MR775127 Zbl 0601.1403110.2977/prims/1195180376Search in Google Scholar

[16] C. T. C. Wall, Singularities of nets of quadrics. Compositio Math. 42 (1980/81), 187–212. MR596875 Zbl 0423.14002Search in Google Scholar

Received: 2017-10-02
Revised: 2018-03-05
Published Online: 2019-09-11
Published in Print: 2020-01-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2018-0037/html
Scroll to top button