Home Mathematics Principal curvatures and parallel surfaces of wave fronts
Article
Licensed
Unlicensed Requires Authentication

Principal curvatures and parallel surfaces of wave fronts

  • Keisuke Teramoto EMAIL logo
Published/Copyright: September 11, 2019
Become an author with De Gruyter Brill

Abstract

We give criteria for which a principal curvature becomes a bounded C-function at non-degenerate singular points of wave fronts by using geometric invariants. As applications, we study singularities of parallel surfaces and extended distance squared functions of wave fronts. Moreover, we relate these singularities to some geometric invariants of fronts.

MSC 2010: 57R45; 53A05; 58K05

Acknowledgements

The author thanks Professor Kentaro Saji for fruitful discussions and valuable comments. He also thanks the referee for reading the manuscript carefully and for helpful suggestions.

  1. Communicated by: P. Eberlein

  2. Funding The author was partly supported by the Grant-in-Aid for JSPS Fellows, No. 17J02151.

References

[1] V. I. Arnol’d, S. M. GuseĭZade, A. N. Varchenko, Singularities of differentiable maps. Vol. I. Birkhäuser 1985. MR777682 Zbl 0554.5800110.1007/978-1-4612-5154-5Search in Google Scholar

[2] J. W. Bruce, P. J. Giblin, Curves and singularities. Cambridge Univ. Press 1992. MR1206472 Zbl 0770.5300210.1017/CBO9781139172615Search in Google Scholar

[3] J. W. Bruce, P. J. Giblin, F. Tari, Families of surfaces: focal sets, ridges and umbilics. Math. Proc. Cambridge Philos. Soc. 125 (1999), 243–268. MR1643790 Zbl 1024.5300410.1017/S0305004198003004Search in Google Scholar

[4] S. Fujimori, K. Saji, M. Umehara, K. Yamada, Singularities of maximal surfaces. Math. Z. 259 (2008), 827–848. MR2403743 Zbl 1145.5702610.1007/s00209-007-0250-0Search in Google Scholar

[5] T. Fukui, M. Hasegawa, Fronts of Whitney umbrella—a differential geometric approach via blowing up. J. Singul. 4 (2012), 35–67. MR3044486 Zbl 1292.5300510.5427/jsing.2012.4cSearch in Google Scholar

[6] T. Fukui, M. Hasegawa, Singularities of parallel surfaces.Tohoku Math. J. (2)64 (2012), 387–408. MR2979288 Zbl 1257.5300510.2748/tmj/1347369369Search in Google Scholar

[7] M. Hasegawa, A. Honda, K. Naokawa, K. Saji, M. Umehara, K. Yamada, Intrinsic properties of surfaces with singularities. Internat. J. Math. 26 (2015), 1540008, 34. MR3338072 Zbl 1321.5703910.1142/S0129167X1540008XSearch in Google Scholar

[8] M. Hasegawa, A. Honda, K. Naokawa, M. Umehara, K. Yamada, Intrinsic invariants of cross caps. Selecta Math. (N.S.)20 (2014), 769–785. MR3217459 Zbl 1298.5702410.1007/s00029-013-0134-6Search in Google Scholar

[9] G.-O. Ishikawa, Y. Machida, Singularities of improper affine spheres and surfaces of constant Gaussian curvature. Internat. J. Math. 17 (2006), 269–293. MR2215151 Zbl 1093.5306710.1142/S0129167X06003485Search in Google Scholar

[10] S. Izumiya, M. d. C. Romero Fuster, M. A. S. Ruas, F. Tari, Differential geometry from a singularity theory viewpoint. World Scientific, Hackensack, NJ 2016. MR3409029 Zbl 1369.53004Search in Google Scholar

[11] S. Izumiya, K. Saji, The mandala of Legendrian dualities for pseudo-spheres in Lorentz-Minkowski space and “flat” spacelike surfaces. J. Singul. 2 (2010), 92–127. MR2763021 Zbl 1292.5300910.5427/jsing.2010.2gSearch in Google Scholar

[12] S. Izumiya, K. Saji, M. Takahashi, Horospherical flat surfaces in hyperbolic 3-space. J. Math. Soc. Japan62 (2010), 789–849. MR2648063 Zbl 1205.5306510.2969/jmsj/06230789Search in Google Scholar

[13] M. Kokubu, W. Rossman, K. Saji, M. Umehara, K. Yamada, Singularities of flat fronts in hyperbolic space. Pacific J. Math. 221 (2005), 303–351. MR2196639 Zbl 1110.5304410.2140/pjm.2005.221.303Search in Google Scholar

[14] M. Kokubu, W. Rossman, M. Umehara, K. Yamada, Flat fronts in hyperbolic 3-space and their caustics. J. Math. Soc. Japan59 (2007), 265–299. MR2302672 Zbl 1120.5303610.2969/jmsj/1180135510Search in Google Scholar

[15] L. d. F. Martins, K. Saji, Geometric invariants of cuspidal edges. Canad. J. Math. 68 (2016), 445–462. MR3484374 Zbl 1353.5702710.4153/CJM-2015-011-5Search in Google Scholar

[16] L. F. Martins, J. J. Nuño Ballesteros, Contact properties of surfaces in ℝ3 with corank 1 singularities. Tohoku Math. J. (2)67 (2015), 105–124. MR3337965 Zbl 1320.5802310.2748/tmj/1429549581Search in Google Scholar

[17] L. F. Martins, K. Saji, M. Umehara, K. Yamada, Behavior of Gaussian curvature and mean curvature near non-degenerate singular points on wave fronts. In: Geometry and topology of manifolds, volume 154 of Springer Proc. Math. Stat., 247–281, Springer 2016. MR3555987 Zbl 1347.5304410.1007/978-4-431-56021-0_14Search in Google Scholar

[18] S. Murata, M. Umehara, Flat surfaces with singularities in Euclidean 3-space. J. Differential Geom. 82 (2009), 279–316. MR2520794 Zbl 1184.5301510.4310/jdg/1246888486Search in Google Scholar

[19] K. Naokawa, M. Umehara, K. Yamada, Isometric deformations of cuspidal edges. Tohoku Math. J. (2)68 (2016), 73–90. MR3476137 Zbl 1350.5703110.2748/tmj/1458248863Search in Google Scholar

[20] R. Oset Sinha, F. Tari, On the flat geometry of the cuspidal edge. Osaka J. Math. 55 (2018), 393–421. MR3824838 Zbl 06927819Search in Google Scholar

[21] I. R. Porteous, The normal singularities of a submanifold.J. Differential Geometry5 (1971), 543–564. MR0292092 Zbl 0226.5301010.4310/jdg/1214430015Search in Google Scholar

[22] I. R. Porteous, Geometric differentiation. Cambridge Univ. Press 2001. MR1871900 Zbl 1013.53001Search in Google Scholar

[23] K. Saji, Criteria for D4 singularities of wave fronts. Tohoku Math. J. (2)63 (2011), 137–147. MR2788779 Zbl 1233.5701710.2748/tmj/1303219939Search in Google Scholar

[24] K. Saji, M. Umehara, K. Yamada, Ak singularities of wave fronts. Math. Proc. Cambridge Philos. Soc. 146 (2009), 731–746. MR2496355 Zbl 1173.5303910.1017/S0305004108001977Search in Google Scholar

[25] K. Saji, M. Umehara, K. Yamada, The geometry of fronts.Ann. of Math. (2)169 (2009), 491–529. MR2480610 Zbl 1177.5301410.4007/annals.2009.169.491Search in Google Scholar

[26] K. Saji, M. Umehara, K. Yamada, The duality between singular points and inflection points on wave fronts. Osaka J. Math. 47 (2010), 591–607. MR2722375 Zbl 1209.57020Search in Google Scholar

[27] S. Shiba, M. Umehara, The behavior of curvature functions at cusps and inflection points. Differential Geom. Appl. 30 (2012), 285–299. MR2922645 Zbl 1250.5300510.1016/j.difgeo.2012.04.001Search in Google Scholar

[28] K. Teramoto, Parallel and dual surfaces of cuspidal edges.Differential Geom. Appl. 44 (2016), 52–62. MR3433975 Zbl 1339.5300310.1016/j.difgeo.2015.10.005Search in Google Scholar

Received: 2017-05-22
Revised: 2017-09-27
Published Online: 2019-09-11
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2018-0038/html
Scroll to top button