Abstract
Let 𝓜g be the moduli space of compact connected hyperbolic surfaces of genus g ≥ 2, and 𝓑g ⊂ 𝓜g its branch locus. Let
Communicated by: J. Ratcliffe
Funding: The first author was partially supported by the Project MTM2012-31973. The second author was partially supported by Project PIA, ACT 1415.
References
[1] W. Abikoff, Degenerating families of Riemann surfaces. Ann. of Math. (2) 105 (1977), 29–44. MR0442293 Zbl 0347.3201010.2307/1971024Search in Google Scholar
[2] J. D. Achter, R. Pries, The integral monodromy of hyperelliptic and trielliptic curves. Math. Ann. 338 (2007), 187–206. MR2295509 Zbl 1129.1102710.1007/s00208-006-0072-0Search in Google Scholar
[3] T. Ashikaga, M. Ishizaka, Classification of degenerations of curves of genus three via Matsumoto–Montesinos’ theorem. Tohoku Math. J. (2) 54 (2002), 195–226. MR1904949 Zbl 1094.1400610.2748/tmj/1113247563Search in Google Scholar
[4] G. Bartolini, A. F. Costa, M. Izquierdo, On the connectivity of branch loci of moduli spaces. Ann. Acad. Sci. Fenn. Math. 38 (2013), 245–258. MR3076808 Zbl 1279.1403210.5186/aasfm.2013.3820Search in Google Scholar
[5] G. Bartolini, A. F. Costa, M. Izquierdo, On the orbifold structure of the moduli space of Riemann surfaces of genera four and five. Rev. R. Acad. Cienc. Exactas FĂs. Nat. Ser. A Math. RACSAM108 (2014), 769–793. MR3249974 Zbl 1297.1403110.1007/s13398-013-0140-8Search in Google Scholar
[6] L. Bers, On spaces of Riemann surfaces with nodes. Bull. Amer. Math. Soc. 80 (1974), 1219–1222. MR0361165 Zbl 0294.3201710.1090/S0002-9904-1974-13686-4Search in Google Scholar
[7] M. Boileau, S. Maillot, J. Porti, Three-dimensional orbifolds and their geometric structures, volume 15 of Panoramas et Synthèses. Société Mathématique de France, Paris 2003. MR2060653 Zbl 1058.57009Search in Google Scholar
[8] S. A. Broughton, The equisymmetric stratification of the moduli space and the Krull dimension of mapping class groups. Topology Appl. 37 (1990), 101–113. MR1080344 Zbl 0747.3201710.1016/0166-8641(90)90055-7Search in Google Scholar
[9] S. A. Broughton, Classifying finite group actions on surfaces of low genus. J. Pure Appl. Algebra69 (1991), 233–270. MR1090743 Zbl 0722.5700510.1016/0022-4049(91)90021-SSearch in Google Scholar
[10] M. Cornalba, On the locus of curves with automorphisms. Ann. Mat. Pura Appl. (4) 149 (1987), 135–151. MR932781 Zbl 0649.1401310.1007/BF01773930Search in Google Scholar
[11] A. F. Costa, V. Gonz\’alez-Aguilera, Limits of equisymmetric 1-complex dimensional families of Riemann surfaces. Math. Scand. 121 (2017), 26–48. MR3708962 Zbl 0679658610.7146/math.scand.a-26306Search in Google Scholar
[12] A. F. Costa, M. Izquierdo, On the connectedness of the branch locus of the moduli space of Riemann surfaces of genus 4. Glasg. Math. J. 52 (2010), 401–408. MR2610983 Zbl 1195.3006410.1017/S0017089510000091Search in Google Scholar
[13] A. F. Costa, M. Izquierdo, H. Parlier, Connecting p-gonal loci in the compactification of moduli space. Rev. Mat. Complut. 28 (2015), 469–486. MR3344087 Zbl 1317.1406210.1007/s13163-014-0161-7Search in Google Scholar
[14] P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus. Inst. Hautes études Sci. Publ. Math. no. 36 (1969), 75–109. MR0262240 Zbl 0181.4880310.1007/BF02684599Search in Google Scholar
[15] V. Gonz\’alez-Aguilera, R. E. Rodrà guez, On principally polarized abelian varieties and Riemann surfaces associated to prisms and pyramids. In: Lipa’s legacy (New York, 1995), volume 211 of Contemp. Math., 269–284, Amer. Math. Soc. 1997. MR1476992 Zbl 0926.3201910.1090/conm/211/02825Search in Google Scholar
[16] W. Harvey, Chabauty spaces of discrete groups. Princeton Univ. Press 1974. MR0364629 Zbl 0313.3202810.1515/9781400881642-019Search in Google Scholar
[17] J. H. Hubbard, S. Koch, An analytic construction of the Deligne-Mumford compactification of the moduli space of curves. J. Differential Geom. 98 (2014), 261–313. MR3263519 Zbl 1318.3201910.4310/jdg/1406552251Search in Google Scholar
[18] H. Kimura, Classification of automorphism groups, up to topological equivalence, of compact Riemann surfaces of genus 4. J. Algebra264 (2003), 26–54. MR1980684 Zbl 1027.3006310.1016/S0021-8693(03)00138-8Search in Google Scholar
[19] A. M. Macbeath, D. Singerman, Spaces of subgroups and Teichm\"uller space. Proc. London Math. Soc. (3) 31 (1975), 211–256. MR0397022 Zbl 0314.3201210.1112/plms/s3-31.2.211Search in Google Scholar
[20] Y. Matsumoto, J. M. Montesinos-Amilibia, A proof of Thurston’s uniformization theorem of geometric orbifolds. Tokyo J. Math. 14 (1991), 181–196. MR1108165 Zbl 0732.5701510.3836/tjm/1270130498Search in Google Scholar
[21] Y. Matsumoto, J. M. Montesinos-Amilibia, Pseudo-periodic maps and degeneration of Riemann surfaces. Springer 2011. MR2839459 Zbl 1239.5700110.1007/978-3-642-22534-5Search in Google Scholar
[22] R. Miranda, Graph curves and curves on K3 surfaces. In: Lectures on Riemann surfaces (Trieste, 1987), 119–176, World Sci. Publ., Teaneck, NJ 1989. MR1082353 Zbl 0800.1401410.1142/9789814503365_0004Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- A Batyrev type classification of ℚ-factorial projective toric varieties
- Blocking sets of certain line sets related to a hyperbolic quadric in PG(3, q)
- Affine-compact functors
- Limit points of the branch locus of 𝓜g
- Criteria for strict monotonicity of the mixed volume of convex polytopes
- Principal curvatures and parallel surfaces of wave fronts
- Nodal curves with a contact-conic and Zariski pairs
- Corrigendum to the paper “On surfaces with two apparent double points”
Articles in the same Issue
- Frontmatter
- A Batyrev type classification of ℚ-factorial projective toric varieties
- Blocking sets of certain line sets related to a hyperbolic quadric in PG(3, q)
- Affine-compact functors
- Limit points of the branch locus of 𝓜g
- Criteria for strict monotonicity of the mixed volume of convex polytopes
- Principal curvatures and parallel surfaces of wave fronts
- Nodal curves with a contact-conic and Zariski pairs
- Corrigendum to the paper “On surfaces with two apparent double points”