Home Limit points of the branch locus of 𝓜g
Article
Licensed
Unlicensed Requires Authentication

Limit points of the branch locus of 𝓜g

  • Raquel DĂ­az EMAIL logo and VĂ­ctor González-Aguilera
Published/Copyright: June 23, 2019
Become an author with De Gruyter Brill

Abstract

Let 𝓜g be the moduli space of compact connected hyperbolic surfaces of genus g ≥ 2, and 𝓑g ⊂ 𝓜g its branch locus. Let Mg^ be the Deligne–Mumford compactification of the moduli space of smooth, complete, connected surfaces of genus g ≥ 2 over ℂ. The branch locus 𝓑g is stratified by smooth locally closed equisymmetric strata, where a stratum consists of hyperbolic surfaces with equivalent action of their orientation-preserving isometry group. Any stratum can be determined by a certain epimorphism Φ. In this paper, for any of these strata, we describe the topological type of its limits points in 𝓜͡g in terms of Φ. We apply our method to the 2-complex dimensional stratum corresponding to the pyramidal hyperbolic surfaces.

  1. Communicated by: J. Ratcliffe

  2. Funding: The first author was partially supported by the Project MTM2012-31973. The second author was partially supported by Project PIA, ACT 1415.

References

[1] W. Abikoff, Degenerating families of Riemann surfaces. Ann. of Math. (2) 105 (1977), 29–44. MR0442293 Zbl 0347.3201010.2307/1971024Search in Google Scholar

[2] J. D. Achter, R. Pries, The integral monodromy of hyperelliptic and trielliptic curves. Math. Ann. 338 (2007), 187–206. MR2295509 Zbl 1129.1102710.1007/s00208-006-0072-0Search in Google Scholar

[3] T. Ashikaga, M. Ishizaka, Classification of degenerations of curves of genus three via Matsumoto–Montesinos’ theorem. Tohoku Math. J. (2) 54 (2002), 195–226. MR1904949 Zbl 1094.1400610.2748/tmj/1113247563Search in Google Scholar

[4] G. Bartolini, A. F. Costa, M. Izquierdo, On the connectivity of branch loci of moduli spaces. Ann. Acad. Sci. Fenn. Math. 38 (2013), 245–258. MR3076808 Zbl 1279.1403210.5186/aasfm.2013.3820Search in Google Scholar

[5] G. Bartolini, A. F. Costa, M. Izquierdo, On the orbifold structure of the moduli space of Riemann surfaces of genera four and five. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM108 (2014), 769–793. MR3249974 Zbl 1297.1403110.1007/s13398-013-0140-8Search in Google Scholar

[6] L. Bers, On spaces of Riemann surfaces with nodes. Bull. Amer. Math. Soc. 80 (1974), 1219–1222. MR0361165 Zbl 0294.3201710.1090/S0002-9904-1974-13686-4Search in Google Scholar

[7] M. Boileau, S. Maillot, J. Porti, Three-dimensional orbifolds and their geometric structures, volume 15 of Panoramas et Synthèses. Société Mathématique de France, Paris 2003. MR2060653 Zbl 1058.57009Search in Google Scholar

[8] S. A. Broughton, The equisymmetric stratification of the moduli space and the Krull dimension of mapping class groups. Topology Appl. 37 (1990), 101–113. MR1080344 Zbl 0747.3201710.1016/0166-8641(90)90055-7Search in Google Scholar

[9] S. A. Broughton, Classifying finite group actions on surfaces of low genus. J. Pure Appl. Algebra69 (1991), 233–270. MR1090743 Zbl 0722.5700510.1016/0022-4049(91)90021-SSearch in Google Scholar

[10] M. Cornalba, On the locus of curves with automorphisms. Ann. Mat. Pura Appl. (4) 149 (1987), 135–151. MR932781 Zbl 0649.1401310.1007/BF01773930Search in Google Scholar

[11] A. F. Costa, V. Gonz\’alez-Aguilera, Limits of equisymmetric 1-complex dimensional families of Riemann surfaces. Math. Scand. 121 (2017), 26–48. MR3708962 Zbl 0679658610.7146/math.scand.a-26306Search in Google Scholar

[12] A. F. Costa, M. Izquierdo, On the connectedness of the branch locus of the moduli space of Riemann surfaces of genus 4. Glasg. Math. J. 52 (2010), 401–408. MR2610983 Zbl 1195.3006410.1017/S0017089510000091Search in Google Scholar

[13] A. F. Costa, M. Izquierdo, H. Parlier, Connecting p-gonal loci in the compactification of moduli space. Rev. Mat. Complut. 28 (2015), 469–486. MR3344087 Zbl 1317.1406210.1007/s13163-014-0161-7Search in Google Scholar

[14] P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus. Inst. Hautes études Sci. Publ. Math. no. 36 (1969), 75–109. MR0262240 Zbl 0181.4880310.1007/BF02684599Search in Google Scholar

[15] V. Gonz\’alez-Aguilera, R. E. Rodrí guez, On principally polarized abelian varieties and Riemann surfaces associated to prisms and pyramids. In: Lipa’s legacy (New York, 1995), volume 211 of Contemp. Math., 269–284, Amer. Math. Soc. 1997. MR1476992 Zbl 0926.3201910.1090/conm/211/02825Search in Google Scholar

[16] W. Harvey, Chabauty spaces of discrete groups. Princeton Univ. Press 1974. MR0364629 Zbl 0313.3202810.1515/9781400881642-019Search in Google Scholar

[17] J. H. Hubbard, S. Koch, An analytic construction of the Deligne-Mumford compactification of the moduli space of curves. J. Differential Geom. 98 (2014), 261–313. MR3263519 Zbl 1318.3201910.4310/jdg/1406552251Search in Google Scholar

[18] H. Kimura, Classification of automorphism groups, up to topological equivalence, of compact Riemann surfaces of genus 4. J. Algebra264 (2003), 26–54. MR1980684 Zbl 1027.3006310.1016/S0021-8693(03)00138-8Search in Google Scholar

[19] A. M. Macbeath, D. Singerman, Spaces of subgroups and Teichm\"uller space. Proc. London Math. Soc. (3) 31 (1975), 211–256. MR0397022 Zbl 0314.3201210.1112/plms/s3-31.2.211Search in Google Scholar

[20] Y. Matsumoto, J. M. Montesinos-Amilibia, A proof of Thurston’s uniformization theorem of geometric orbifolds. Tokyo J. Math. 14 (1991), 181–196. MR1108165 Zbl 0732.5701510.3836/tjm/1270130498Search in Google Scholar

[21] Y. Matsumoto, J. M. Montesinos-Amilibia, Pseudo-periodic maps and degeneration of Riemann surfaces. Springer 2011. MR2839459 Zbl 1239.5700110.1007/978-3-642-22534-5Search in Google Scholar

[22] R. Miranda, Graph curves and curves on K3 surfaces. In: Lectures on Riemann surfaces (Trieste, 1987), 119–176, World Sci. Publ., Teaneck, NJ 1989. MR1082353 Zbl 0800.1401410.1142/9789814503365_0004Search in Google Scholar

Received: 2017-03-19
Revised: 2017-12-28
Published Online: 2019-06-23
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2018-0029/html
Scroll to top button