Abstract
We give linear algebraic and monadic descriptions of the Hilbert scheme of points on the affine space of dimension n which naturally extends Nakajima’s representation of the Hilbert scheme of points on the plane. As an application of our ideas and recent results from the literature on commuting matrices, we show that the Hilbert scheme of c points on ℂ3 is irreducible for c ≤ 10.
Acknowledgements
We would like to thank D. Erman for useful discussions and suggestions about the irreducibility results of Hilbert schemes of points.
Funding: AAH was supported by the FAPESP post-doctoral grant number 2009/12576-9. MJ is partially supported by the CNPq grant number 303332/2014-0 and the FAPESP grant number 2014/14743-8.
References
[1] A. Álvarez, F. Sancho, P. Sancho, Homogeneous Hilbert scheme. Proc. Amer. Math. Soc. 136 (2008), 781–790. MR2361849 Zbl 1131.1400810.1090/S0002-9939-07-09169-1Search in Google Scholar
[2] D. A. Cartwright, D. Erman, M. Velasco, B. Viray, Hilbert schemes of 8 points. Algebra Number Theory3 (2009), 763–795. MR2579394 Zbl 1187.1400510.2140/ant.2009.3.763Search in Google Scholar
[3] M. Cirafici, A. Sinkovics, R. J. Szabo, Cohomological gauge theory, quiver matrix models and Donaldson-Thomas theory. Nuclear Phys. B809 (2009), 452–518. MR2478118 Zbl 1192.8130910.1016/j.nuclphysb.2008.09.024Search in Google Scholar
[4] G. Fløystad, Monads on projective spaces. Comm. Algebra28 (2000), 5503–5516. MR1808585 Zbl 0977.1400710.1080/00927870008827171Search in Google Scholar
[5] J. Fogarty, Algebraic families on an algebraic surface. Amer. J. Math90 (1968), 511–521. MR0237496 Zbl 0176.1840110.2307/2373541Search in Google Scholar
[6] F. Galluzzi, F. Vaccarino, Hilbert-Chow morphism for non-commutative Hilbert schemes and moduli spaces of linear representations. Algebr. Represent. Theory13 (2010), 491–509. MR2660858 Zbl 1203.1400410.1007/s10468-009-9134-9Search in Google Scholar
[7] M. Gerstenhaber, On dominance and varieties of commuting matrices. Ann. of Math. (2) 73 (1961), 324–348. MR0132079 Zbl 0168.2820110.2307/1970336Search in Google Scholar
[8] A. Grothendieck, Techniques de construction et théorèmes ďexistence en géométrie algébrique. IV. Les schémas de Hilbert. In: Séminaire Bourbaki, Vol. 6, Exp. No. 221, 249–276, Soc. Math. France, Paris 1961. MR1611822 Zbl 0236.14003Search in Google Scholar
[9] T. S. Gustavsen, D. Laksov, R. M. Skjelnes, An elementary, explicit, proof of the existence of Hilbert schemes of points. J. Pure Appl. Algebra210 (2007), 705–720. MR2324602 Zbl 1122.1400410.1016/j.jpaa.2006.11.003Search in Google Scholar
[10] R. Hartshorne, Connectedness of the Hilbert scheme. Inst. Hautes Études Sci. Publ. Math. no. 29 (1966), 5–48. MR0213368 Zbl 0171.4150210.1007/BF02684803Search in Google Scholar
[11] A. A. Henni, M. Jardim, R. V. Martins, ADHM construction of perverse instanton sheaves. Glasg. Math. J. 57 (2015), 285–321. MR3333943 Zbl 1316.1402410.1017/S0017089514000305Search in Google Scholar
[12] J. Holbrook, M. Z. Omladič, Approximating commuting operators. Linear Algebra Appl. 327 (2001), 131–149. MR1823346 Zbl 0978.1501110.1016/S0024-3795(00)00286-XSearch in Google Scholar
[13] A. Iarrobino, Reducibility of the family of 0-dimensional schemes on a variety. Inventiones Math. 15 (1972), 72–77. MR0301010 Zbl 0227.1400610.1007/BF01418644Search in Google Scholar
[14] A. Iarrobino, Jr., Compressed algebras and components of the punctual Hilbert scheme. In: Algebraic geometry, Sitges (Barcelona), 1983, volume 1124 of Lecture Notes in Math., 146–165, Springer 1985. MR805334 Zbl 0567.1400110.1007/BFb0075000Search in Google Scholar
[15] M. Jardim, R. V. Martins, The ADHM variety and perverse coherent sheaves. J. Geom. Phys. 61 (2011), 2219–2232. MR2827120 Zbl 1229.1401010.1016/j.geomphys.2011.06.003Search in Google Scholar
[16] A. D. King, Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2) 45 (1994), 515–530. MR1315461 Zbl 0837.1600510.1093/qmath/45.4.515Search in Google Scholar
[17] T. S. Motzkin, O. Taussky, Pairs of matrices with property L. II. Trans. Amer. Math. Soc. 80 (1955), 387–401. MR0086781 Zbl 0067.2540110.2307/1992996Search in Google Scholar
[18] D. Mumford, Geometric invariant theory. Springer 1965. MR0214602 Zbl 0147.3930410.1007/978-3-662-00095-3Search in Google Scholar
[19] H. Nakajima, Lectures on Hilbert schemes of points on surfaces, volume 18 of University Lecture Series. Amer. Math. Soc. 1999. MR1711344 Zbl 0949.1400110.1090/ulect/018Search in Google Scholar
[20] N. Nitsure, Construction of Hilbert and Quot schemes. In: Fundamental algebraic geometry, volume 123 of Math. Surveys Monogr., 105–137, Amer. Math. Soc. 2005. MR2223407 Zbl 1085.14001Search in Google Scholar
[21] C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces. Birkhäuser 1980. MR561910 Zbl 0438.3201610.1007/978-3-0348-0151-5Search in Google Scholar
[22] K. C. O’Meara, J. Clark, C. I. Vinsonhaler, Advanced topics in linear algebra. Oxford Univ. Press 2011. MR2849857 Zbl 1235.15013Search in Google Scholar
[23] G. F. Seelinger, Brauer–Severi schemes of finitely generated algebras. Israel J. Math. 111 (1999), 321–337. MR1710744 Zbl 0964.1602610.1007/BF02810690Search in Google Scholar
[24] C. S. Seshadri, Vector bundles on curves. In: Linear algebraic groups and their representations (Los Angeles, CA, 1992), volume 153 of Contemp. Math., 163–200, Amer. Math. Soc. 1993. MR1247504 Zbl 0799.1401310.1090/conm/153/01312Search in Google Scholar
[25] K. Šivic, On varieties of commuting triples III. Linear Algebra Appl. 437 (2012), 393–460. MR2921710 Zbl 1323.1501110.1016/j.laa.2011.08.015Search in Google Scholar
[26] F. Vaccarino, Linear representations, symmetric products and the commuting scheme. J. Algebra317 (2007), 634–641. MR2362934 Zbl 1155.1300710.1016/j.jalgebra.2007.06.033Search in Google Scholar
[27] M. Van den Bergh, The Brauer-Severi scheme of the trace ring of generic matrices. In: Perspectives in ring theory (Antwerp, 1987), volume 233 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 333–338, Kluwer 1988. MR1048420 Zbl 0761.1300310.1007/978-94-009-2985-2_29Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The index of symmetry of three-dimensional Lie groups with a left-invariant metric
- Canonical contact unit cotangent bundle
- On the umbilicity of generalized linear Weingarten hypersurfaces in hyperbolic spaces
- Regular polyhedra in the 3-torus
- Rational curves on Del Pezzo manifolds
- Commuting matrices and the Hilbert scheme of points on affine spaces
- On rational varieties of small rationality degree
- Skew symmetric logarithms and geodesics on On(ℝ)
- New homogeneous Einstein metrics on quaternionic Stiefel manifolds
Articles in the same Issue
- Frontmatter
- The index of symmetry of three-dimensional Lie groups with a left-invariant metric
- Canonical contact unit cotangent bundle
- On the umbilicity of generalized linear Weingarten hypersurfaces in hyperbolic spaces
- Regular polyhedra in the 3-torus
- Rational curves on Del Pezzo manifolds
- Commuting matrices and the Hilbert scheme of points on affine spaces
- On rational varieties of small rationality degree
- Skew symmetric logarithms and geodesics on On(ℝ)
- New homogeneous Einstein metrics on quaternionic Stiefel manifolds