Home Mathematics On the umbilicity of generalized linear Weingarten hypersurfaces in hyperbolic spaces
Article
Licensed
Unlicensed Requires Authentication

On the umbilicity of generalized linear Weingarten hypersurfaces in hyperbolic spaces

  • Cícero P. Aquino , Márcio Batista and Henrique F. de Lima EMAIL logo
Published/Copyright: March 26, 2018
Become an author with De Gruyter Brill

Abstract

We deal with complete generalized linear Weingarten hypersurfaces immersed in hyperbolic spaces. Under appropriate constraints on the image of the Gauss map, we present suitable conditions which guarantee the umbilicity of these hypersurfaces.


Communicated by: A. Kreuzer


  1. Funding: The first author is partially supported by CNPq, Brazil, grant 302738/2014-2. The second author is partially supported by CNPq, Brazil, grant 456755/2014-4. The third author is partially supported by CNPq, Brazil, grant 303977/2015-9.

References

[1] J. A. Aledo, L. J. Alías, A. Romero, Integral formulas for compact space-like hypersurfaces in de Sitter space: applications to the case of constant higher order mean curvature. J. Geom. Phys. 31 (1999), 195–208. MR1706636 Zbl 0969.5303110.1016/S0393-0440(99)00008-XSearch in Google Scholar

[2] L. J. Alías, A. Brasil, Jr., A. Gervasio Colares, Integral formulae for spacelike hypersurfaces in conformally stationary space-times and applications. Proc. Edinb. Math. Soc. (2)46 (2003), 465–488. MR1998575 Zbl 1053.5303810.1017/S0013091502000500Search in Google Scholar

[3] C. C. P. Aquino, H. F. de Lima, M. A. L. Velásquez, A new characterization of complete linear Weingarten hypersurfaces in real space forms. Pacific J. Math. 261 (2013), 33–43. MR3037557 Zbl 1273.5305110.2140/pjm.2013.261.33Search in Google Scholar

[4] C. C. P. Aquino, H. F. de Lima, M. A. L. Velásquez, Generalized maximum principles and the characterization of linear Weingarten hypersurfaces in space forms. Michigan Math. J. 63 (2014), 27–40. MR3189466 Zbl 1304.5305110.1307/mmj/1395234357Search in Google Scholar

[5] C. C. P. Aquino, H. F. de Lima, M. A. L. Velásquez, Linear Weingarten hypersurfaces with bounded mean curvature in the hyperbolic space. Glasg. Math. J. 57 (2015), 653–663. MR3395339 Zbl 1327.5307510.1017/S0017089514000548Search in Google Scholar

[6] C. C. P. Aquino, H. F. de Lima, On the geometry of linear Weingarten hypersurfaces in the hyperbolic space. Monatsh. Math. 171 (2013), 259–268. MR3090789 Zbl 1279.5305510.1007/s00605-013-0476-3Search in Google Scholar

[7] J. A. L. M. Barbosa, A. G. Colares, Stability of hypersurfaces with constant r-mean curvature. Ann. Global Anal. Geom. 15 (1997), 277–297. MR1456513 Zbl 0891.5304410.1007/978-3-642-25588-5_18Search in Google Scholar

[8] A. Barros, J. Silva, P. Sousa, Rotational linear Weingarten surfaces into the Euclidean sphere. Israel J. Math. 192 (2012), 819–830. MR3009743 Zbl 1259.5305010.1007/s11856-012-0053-9Search in Google Scholar

[9] A. Caminha, On spacelike hypersurfaces of constant sectional curvature Lorentz manifolds. J. Geom. Phys. 56 (2006), 1144–1174. MR2234043 Zbl 1102.5304410.1016/j.geomphys.2005.06.007Search in Google Scholar

[10] A. Caminha, The geometry of closed conformal vector fields on Riemannian spaces. Bull. Braz. Math. Soc. (N.S.)42 (2011), 277–300. MR2833803 Zbl 1242.5306810.1007/s00574-011-0015-6Search in Google Scholar

[11] X. Chao, Y. Lv, On the Gauss map of Weingarten hypersurfaces in hyperbolic spaces. Bull. Braz. Math. Soc. (N.S.)47 (2016), 1051–1069. MR3582027 Zbl 1369.5304010.1007/s00574-016-0203-5Search in Google Scholar

[12] H. Chen, X. Wang, Stability and eigenvalue estimates of linear Weingarten hypersurfaces in a sphere. J. Math. Anal. Appl. 397 (2013), 658–670. MR2979602 Zbl 1260.5311210.1016/j.jmaa.2012.08.003Search in Google Scholar

[13] H. Li, Y. J. Suh, G. Wei, Linear Weingarten hypersurfaces in a unit sphere. Bull. Korean Math. Soc. 46 (2009), 321–329. MR2502796 Zbl 1165.5336110.4134/BKMS.2009.46.2.321Search in Google Scholar

[14] S. Montiel, Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter spaces. J. Math. Soc. Japan55 (2003), 915–938. MR2003752 Zbl 1049.5304410.2969/jmsj/1191418756Search in Google Scholar

[15] R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differential Geometry8 (1973), 465–477. MR0341351 Zbl 0277.5303010.4310/jdg/1214431802Search in Google Scholar

[16] H. Rosenberg, Hypersurfaces of constant curvature in space forms. Bull. Sci. Math. 117 (1993), 211–239. MR1216008 Zbl 0787.53046Search in Google Scholar

[17] S. Shu, Linear Weingarten hypersurfaces in a real space form. Glasg. Math. J. 52 (2010), 635–648. MR2679920 Zbl 1203.5305910.1017/S0017089510000480Search in Google Scholar

[18] M. A. Velásquez, A. F. de Sousa, H. F. de Lima, On the stability of hypersurfaces in space forms. J. Math. Anal. Appl. 406 (2013), 134–146. MR3062407 Zbl 1309.5305010.1016/j.jmaa.2013.04.045Search in Google Scholar

[19] S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25 (1976), 659–670. MR0417452 Zbl 0335.5304110.1512/iumj.1976.25.25051Search in Google Scholar

Received: 2016-07-15
Published Online: 2018-03-26
Published in Print: 2018-10-25

© 2018 Walter de Gruyter GmbH Berlin/Boston

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2018-0005/html
Scroll to top button