Abstract
We prove that every continuous map acting on the four-dimensional Minkowski space and preserving light cones in one direction only is either a Poincaré similarity, that is, a product of a Lorentz transformation and a dilation, or it is of a very special degenerate form.
Funding: The second author was supported by a grant from ARRS, Slovenia.
References
[1] A. D. Aleksandrov, Seminar Report. Uspehi Mat. Nauk. 5 (1950), 187.Search in Google Scholar
[2] A. D. Alexandrov, A contribution to chronogeometry. Canad. J. Math. 19 (1967), 1119–1128. MR0219018 Zbl 0173.2460310.4153/CJM-1967-102-6Search in Google Scholar
[3] A. D. Alexandrov, Mappings of spaces with families of cones and space-time transformations. Ann. Mat. Pura Appl. (4) 103 (1975), 229–257. MR0378695 Zbl 0302.5000910.1007/BF02414157Search in Google Scholar
[4] W. Benz, Real geometries. Bibliographisches Institut, Mannheim 1994. MR1290992 Zbl 0819.51002Search in Google Scholar
[5] H. J. Borchers, G. C. Hegerfeldt, The structure of space-time transformations. Comm. Math. Phys. 28 (1972), 259–266. MR0347307 Zbl 0242.5301710.1007/BF01645780Search in Google Scholar
[6] A. Chubarev, I. Pinelis, Linearity of space-time transformations without the one-to-one, line-onto-line, or constancy-of-speed-of-light assumptions. Comm. Math. Phys. 215 (2000), 433–441. MR1799854 Zbl 0981.5102210.1007/PL00005542Search in Google Scholar
[7] L. K. Hua, Starting with the unit circle. Springer 1981. MR665916 Zbl 0481.4300510.1007/978-1-4613-8136-5Search in Google Scholar
[8] W.-l. Huang, P. Šemrl, Adjacency preserving maps on Hermitian matrices. Canad. J. Math. 60 (2008), 1050–1066. MR2442047 Zbl 1151.1500110.4153/CJM-2008-047-1Search in Google Scholar
[9] J. A. Lester, A physical characterization of conformal transformations of Minkowski spacetime. In: Combinatorics ’81 (Rome, 1981), volume 18 of Ann. Discrete Math., 567–574, North-Holland 1983. MR695841 Zbl 0507.5100410.1016/S0304-0208(08)73334-6Search in Google Scholar
[10] J. A. Lester, M. A. McKiernan, On null cone preserving mappings. Math. Proc. Cambridge Philos. Soc. 81 (1977), 455–462. MR0475596 Zbl 0358.5000210.1017/S0305004100053524Search in Google Scholar
[11] W. F. Pfeffer, Lorentz transformations of a Hilbert space. Amer. J. Math. 103 (1981), 691–709. MR623134 Zbl 0471.4601410.2307/2374047Search in Google Scholar
[12] I. Popovici, D. C. Rădulescu, Characterizing the conformality in a Minkowski space. Ann. Inst. H. Poincaré Sect. A (N.S.) 35 (1981), 131–148. MR637239 Zbl 0476.51014Search in Google Scholar
[13] E. M. Schröder, Ein einfacher Beweis des Satzes von Alexandroff–Lester. J. Geom. 37 (1990), 153–158. MR1041988 Zbl 0704.5101010.1007/BF01230368Search in Google Scholar
[14] E. C. Zeeman, Causality implies the Lorentz group. J. Mathematical Phys. 5 (1964), 490–493. MR0162587 Zbl 0133.2320510.1063/1.1704140Search in Google Scholar
© 2018 Walter de Gruyter GmbH Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphs and metric 2-step nilpotent Lie algebras
- Stein manifolds of nonnegative curvature
- Homogeneous spin Riemannian manifolds with the simplest Dirac operator
- On the quantum periods of del Pezzo surfaces with ⅓ (1, 1) singularities
- Harmonicity of vector fields on a class of Lorentzian solvable Lie groups
- Uniform cover inequalities for the volume of coordinate sections and projections of convex bodies
- Criteria for Hattori–Masuda multi-polytopes via Duistermaat–Heckman functions and winding numbers
- On complex Berwald metrics which are not conformal changes of complex Minkowski metrics
- Continuous space-time transformations
Articles in the same Issue
- Frontmatter
- Graphs and metric 2-step nilpotent Lie algebras
- Stein manifolds of nonnegative curvature
- Homogeneous spin Riemannian manifolds with the simplest Dirac operator
- On the quantum periods of del Pezzo surfaces with ⅓ (1, 1) singularities
- Harmonicity of vector fields on a class of Lorentzian solvable Lie groups
- Uniform cover inequalities for the volume of coordinate sections and projections of convex bodies
- Criteria for Hattori–Masuda multi-polytopes via Duistermaat–Heckman functions and winding numbers
- On complex Berwald metrics which are not conformal changes of complex Minkowski metrics
- Continuous space-time transformations